
Towards better generalization in Pittsburgh Learning Classifier
Systems

Shubhra Kanti Karmaker Santu, Md. Mustafizur Rahman, Md. Monirul Islam and Kazuyuki Murase

Abstract—Generalization ability of a classifier is an important
issue for any classification task. This paper proposes a new
evolutionary system, i.e., EDARIC, based on the Pittsburgh
approach for evolutionary machine learning and classification.
The new system uses a destructive approach that starts with
large-sized rules and gradually decreases the sizes as evolution
progresses. Unlike most previous works, EDARIC adopts an intel-
ligent deletion mechanism, evolves a separate population for each
class of a given problem and uses an ensemble system to classify
unknown instances. These features help in avoiding over-fitting
and class-imbalance problems, which are beneficial for improving
generalization ability of a classification system. EDARIC also
applies a rule post-processing step to exempt the evolution phase
from the burden of tuning a large number of parameters. Ex-
perimental results on various benchmark classification problems
reveal that EDARIC has better generalization ability in case
of both standard and imbalanced datasets compared to many
existing algorithms in the literature.

I. INTRODUCTION

Generalization ability of a classifier is an important issue
for any classification task. It determines accuracy of the
classification system on unknown instances. Two prominent
problems affecting the generalization ability are over-fitting
and class-imbalance. It is thus important to address these
problems while developing the classification system.

Evolutionary rule-based classification systems, also called
Learning Classifier Systems (LCSs), are promising methods
for rule extraction and classification. Unlike neural networks
and support vector machines, LCSs are suitable for many
practical applications (e.g. churn prediction) due to their
ability in producing human understandable if-then rules for
classification. The application of evolutionary algorithms to
classification domains has traditionally been addressed from
two different points of view: the Pittsburgh approach (or
Pittsburgh LCS) and the Michigan approach (or Michigan
LCS). We are particularly interested in the Pittsburgh approach
for this work.

The Pittsburgh approach usually evolves a population con-
taining individuals where each individual consists of a set
of variable-length classification rules and forms a candidate
solution to a given classification task. Some popular Pittsburgh
approaches are DMEL [2], GAssist [3], [4], pitts-GIRLA [12],

Shubhra Kanti Karmaker Santu, Md. Mustafizur Rahman and Md.
Monirul Islam are with the Department of Computer Science and Engi-
neering, Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh. (email:{kantishubhra, mustafiz rahman, mdmonirulis-
lam}@cse.buet.ac.bd).

Kazuyuki Murase is with the Department of Human and Artificial In-
telligence Systems, University of Fukui, Bunkyo, Fukui, Japan. (email:
murase@u-fukui.ac.jp).

ILGA [18], GIL [19], and OIGA [30]. Some of them (e.g.
[4], [12] and [19]) explicitly deal with generalization, while
others (e.g. [2], [18] and [30]) do not. Bacardit et. al. [4] used
the minimum description length principle for generalization
pressure and bloat control. Pitts-GIRLA [12] and GIL [19]
employed a random deletion mechanism for better generaliza-
tion. However, random deletion may remove important rules
from a rule-set (or constraints from a rule), which may make
evolution inefficient. Furthermore, a comprehensive attempt to
deal with the class-imbalance problem is still missing in case
of Pittsburgh approaches, although Michigan approaches have
been adapted to address this problem [22], [23].

In this work, we present a new evolutionary system, called
Evolutionary Destructive Approach to Rule Induction and
Classification (EDARIC), based on the Pittsburgh approach.
Our new system is different from most existing Pittsburgh
LCSs on a number of aspects. First, it not only addresses
the over-fitting problem but also the class-imbalance problem.
Second, it uses a destructive approach with an intelligent
deletion mechanism for producing general (instead of specific)
rule-sets with an aim of avoiding over-fitting. Third, EDARIC
evolves a separate population for each class of a given problem
and finally uses an ensemble system for handling the class-
imbalance problem. Fourth, EDARIC applies a rule post-
processing step that exempt the evolution phase from the
burden of tuning a large number of parameters which requires
running an evolutionary system multiple times with different
parameter settings. Fifth, EDARIC has the beauty of simplicity
that uses few simple operators and parameters.

This is how the rest of the paper is organized. Section II
describes the algorithm EDARIC in details with suitable
examples for each operator used there. Section III reveals
our experimental setup and results. Section IV draws our
conclusion and possible future studies.

II. THE EDARIC ALGORITHM

The destructive process of our algorithm starts evolution
from the most specific rule-sets and then gradually makes them
as much generic as possible by deleting their less interesting
constraints (attributes). The deletion incorporated here works
on the entire population, not on a specific rule-set or rule. This
kind of batch deletion is a unique feature of this work.

EDARIC evolves a separate population, Pi, for a particular
class i of a given classification problem. The rationale behind
maintaining multiple populations is that, accuracy based clas-
sifiers are often biased towards the major class, neglecting
significant information about the minor classes, especially

1666

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

for the class-imbalanced problems. By maintaining multiple
populations, our algorithm gives equal importance to all the
classes, thus preserves information about both the major and
minor classes. Different components of the proposed algorithm
are described below.

A. Initialization and Encoding

Each population, Pi, contains ψ individuals, each of which
is a rule-set consisting of several rules. Our EDARIC initializes
the rule-set by randomly copying m% of the training instances
having the class label i. The parameters m and ψ are defined
by the user. The advantages of this initialization process are
that it is very simple and does not cost any computation
overhead. Most importantly, by such an initialization, start of
evolution with the most specific rules is ensured.

EDARIC follows the Pittsburgh approach for encoding and
evolves a separate Pi for each class i of a given problem.
Each rule-set of Pi represents a candidate solution to the
class i. A rule simply encodes a conjunction of constraints on
the attributes of a training instance. We use #, the wild-card
character, to represent a deleted constraint. EDARIC assumes
discrete data. So, continuous data is discretized before the
application of EDARIC.

B. Evaluation mechanism

A fitness function, FCh, is used to evaluate each individual,
Ch, of Pi. As EDARIC adopts the destructive approach, this
function must incorporate the accuracy of Ch as well as
the overall amount of constraints (attributes) deleted from it.
Under this condition, FCh must be a monotonically increasing
function of both accuracy and deletion. Thus it can be defined
as

FCh = α ∗ACh + (1− α) ∗DCh (1)

where ACh is the percentage accuracy of Ch, DCh is the
percentage of constraints deleted from Ch and α is a weight.
The user-defined parameter α lies in 0 ≤ α ≤ 1 and
determines the impact of accuracy and deletion on FCh. For
a particular accuracy and α, it is obvious that the higher the
amount of deletion is, the greater the fitness is. Thus, assuming
that the accuracy of two individuals (rule-sets) is same, the
fitness of a general rule-set that contains a fewer number of
rules and/or constraints will always be higher than that of a
specific one.

C. Evolutionary operators
1) Selection: The selection operation is performed using

the traditional roulette wheel selection, also known as fit-
ness proportionate selection [15], to choose individuals for
crossover and mutation operations. The individuals of a pop-
ulation are selected for genetic operations with a probability
proportional to their fitness value defined by Eq. (1). That is,
the individuals that are more fit have a greater probability of
being selected.

2) Crossover: EDARIC uses the two-point crossover for
breeding. Besides interchanging constraints (attributes) be-
tween two individuals, crossover allows re-occurrence of
deleted constraints (attributes) with possibly the same or
different values. Figure 1 demonstrates this process. Notice
that, the second rule of the first individual has two attributes
and one attribute, respectively, before and after the application
of crossover. And the deleted attribute in the first rule of the
first individual appears again after crossover and gets the value
y4.

Fig. 1: Two-point Crossover operator of EDARIC

3) Mutation: The mutation operator randomly selects a
constraint (attribute) from a randomly chosen rule and changes
the constraint randomly to an allowable one with a small
mutation probability. Besides this traditional role, it tries to
make the rule more generic, performs a biased deletion with a
bias towards less interesting attributes. To implement this, we
define interestingness of an attribute and formulate a selection
mechanism for deleting the less interesting attributes.

We first consider the interestingness of a particular value of
an attribute and then use it to derive the overall interestingness
of the attribute. For a particular value l of the attribute atr and
the class label r, the interestingness of a rule if atr = l then
class = r can be defined by the RI (Rule Interestingness)
measure as:

RIatr,l,r = Natr,l,r −Natr,l ×
Nr
N

(2)

where, Nr= Number of examples with class value r
Natr,l= Number of examples with value l for attribute atr
Natr,l,r= Number of examples with class value r and value l
for attribute atr
N=Total number of training examples

The insight behind Eq.(2) can be gained by considering the
fact that Nr

N is the number of times in percentage class value
r occurs in the training data. So, Natr,l × Nr

N denotes the
expected number of times l and r appear together in a training
example. Whereas, Natr,l,r is the actual number of times l and
r appear together. So, Eq.(2) measures rule interestingness as
a difference between the observed and the expected value.

We are now ready to define the overall interestingness of
an attribute by considering all the possible left and right hand
combinations. The RI of atr can be defined as

RIatr =

∑
l

∑
r RIatr,l,r
n× κ

(3)

Here, κ is the cardinality of the set for all possible values
(discrete) of atr and n is the total number of classes. Finally,
we normalize RIatr by dividing it N .

1667

Algorithm 1 Evolutionary Destructive Approach to Rule
Induction and Classification

Calculate RIj for each attribute j
for i = 1→ Total Number Of Classes do

Pi ← Initial Population for class i
∆0 ← initial deletion amount for Pi
set RWj,0 to 1/RIj for each attribute j
q ← 0;
while Better solution can be found do

Delete ∆q alleles of Pi using intelligent deletion;
Execute GA to optimize Pi
∆q+1 ← revised deletion amount for next iteration;
RWj,q+1 ← deletion probability in next iteration for

each attribute j;
q ← q + 1;

end while
Add the rules from Ch(best, q) with RI > θi to final

rule-set for class i
end for

RIatr ←
RIatr
N

(4)

Now, let’s define the number of attributes that are to be
deleted from population Pi in the initial iteration. We select
this number to be a portion (preferably small) of the total
number of alleles in the individual. Thus, we define the initial
deletion amount ∆0 by Eq. (5).

∆0 ← γ ∗


TG(Ch,i)∑
k=1

Nk(Ch, i)

 (5)

Here, for the population Pi, Nk(Ch, i) and TG(Ch, i) denote
the number of attributes in the rule k of Ch and the total
number of rules in Ch respectively.

An obvious question is which attributes are to be deleted.
We adopt a stochastic approach here rather than a deterministic
one. A selection procedure is implemented through roulette
wheel in such a way that the deletion probability of the less
interesting attributes be higher than that of the more interest-
ing attributes. This is easily implemented by initializing the
roulette wheel by the 1/RIatr measure (normalized) for the
probability of each attribute to be selected for deletion. That
is, the probability RWatr,init, that attribute atr be selected
for deletion at the initial stage of the rule generalization
process through the roulette wheel mechanism is defined by
the following equation:

RWatr,init = 1/RIatr (6)

We thus define a biased deletion procedure with a bias
towards less interesting attributes at the initial stage of the
rule generalization process. We randomly select one rule of
some individual and delete that particular attribute of this rule
which is selected by the roulette wheel selection method as
discussed above. This procedure is repeated ∆0 times which

performs the batch deletion of ∆0 attributes over the entire
population Pi.

Now, another question that immediately arises is that what
will be the deletion amount and deletion criteria for the next
iterations. It is obvious that, at initial stages we would prefer
a larger scale deletion than at final stages where the candidate
solutions have nearly converged. An adaptive method for
determining the deletion rate at every iteration is needed
that will depend on the initial deletion rate, the change in
accuracy due to the previous deletion process and the overall
deletion amount. All these points are incorporated in our Eq.
(7). Here, Ch(best, q) is the fittest individual after iteration
q. DCh(best,q) is the percentage of attributes already deleted
from the fittest chromosome after iteration q, ACh(best,q) is
the accuracy of the fittest chromosome after iteration q and
ACh(best,q−1) is the accuracy of fittest chromosome after
iteration q − 1. Eq. (7) drives ∆q+1 to decrease in value
when the percentage of attributes already deleted increases
and drives the same to increase in value when accuracy of the
fittest chromosome in the next iteration increases.

∆q+1 ← ∆0∗
{

1−DCh(best,q) +ACh(best,q) −ACh(best,q−1)

}
(7)

We now focus on which attributes are going to be deleted. It
directly indicates that the roulette wheel selection mechanism
for the biased deletion must be modified in some manner
that directly reflects the refined probability of each attribute
to be deleted. We will ultimately move towards uniformity
from biasness, but the key question is what should be the rate
by which we should approach uniformity. ∆q is obviously a
guideline. Standard deviation of the attribute’s interestingness
may be another guideline. If ∆q is high, we are away from
uniformity and should approach uniformity at a higher rate
than if this value is low. So, the probabilities in the roulette
wheel selection mechanism can be iteratively modified by
Eq.(8). Here, RWU is the value of the probability that each
attribute must have in a roulette wheel selection mechanism
to ensure uniform selection for deletion and RWatr,q is the
roulette wheel selection probability of attribute atr to be
selected for deletion after iteration q. Eq.(8) forces RWatr,q

to be uniform eventually for each attribute atr with a rate
proportional to ∆q . Thus, uniformity is achieved automatically
after a number of iterations. Normalization of RW values is
again a must.

RWatr,q+1 ← RWatr,q + ∆q ∗ (RWU −RWatr,q) (8)

Our EDARIC is terminated in the following two cases.
Firstly, if no better solution could be found after µ1 iterations.
Secondly, if any further deletion action incurs severe penalty
in accuracy. The pseudo code of EDARIC is given in Algo-
rithm 1. This algorithm runs in O(nµ1µ2) time where n is the
total number of classes, µ1 is number of times the while loop
executes and µ2 is number of iterations GA executes each time
it is evoked. The running time of Algorithm 1 is independent
w.r.t. population size as steady state GA is used rather than
traditional generational GA.

1668

D. Post-processing, ensemble system and classification

The classification task comes into action after the Rule
Induction task evolves the final rule-sets for all the classes.
As EDARIC is based on the Pittsburgh approach and evolves
a separate population Pi for each class i, the best individual
(rule-set) of Pi is the solution for the class i. From this rule-set,
rules with RI measure above θi are retained and the rest are
discarded, where θi is a user defined parameter. The evolution
session is now relieved from the burden of time consuming
multiple runs with different parameter settings (specially α).
This is because θi works on the evolved concise rule set and
EDARIC can tune it by varying its value, which has almost
the same effect as varying α during evolution.

Algorithm 2 EDARIC: Classification Task

R← {}
for i = 1→ Total Number Of Classes do

for each gene g of the best individual in Pi do
Construct a rule r of the form g → i
Calculate RI of r
if RI > θi then

R← R ∪ r
end if

end for
end for
for each testing example k do

match k with each rule rεR
Let, c be the class with maximum number of counts as

the consequent of the matched rules
if c is unique then

assign k to class c
else

assign k to class cp, where, cp be the class with
maximum number of counts as the consequents of the
partially matched rules. Resolve ties randomly.

end if
end for

The retained rules of each Pi are listed together and are
used as an ensemble system to classify unknown instances
that are not used during evolution. An unknown instance is
matched against all the rules and the class with the maximum
number of matching rules is assigned as its class. In case of a
tie, partial matches (w.r.t. number of constraints matched) are
calculated and the class with the maximum partial match is
selected. If observed carefully, it can easily be identified that
θi can also work as an essential component to handle the class-
imbalance problem. Consider the ensemble system that applies
majority voting; keeping θi low, i.e., allow more rules to retain,
for the minor classes and keeping the same high, i.e., allow
fewer rules to retain, for the major classes makes the ensemble
more conservative(flexible) in classifying an instance as a
major(minor) class. Thus, θi add an extra layer to handle the
class-imbalance problem. The overall methodology is given
in Algorithm 2, which shows that classification of a particular

TABLE I: Performance of EDARIC on different problems

Standard Datasets Imbalanced datasets
Dataset Accuracy Kappa Dataset G-mean
abalone 27.85±4.76 0.16±0.05 Abalone9-18 69.62 ± 8.87
australian credit 87.82±1.26 0.75±0.02 Abalone19 72.17 ± 9.57
liver disorders [Bupa] 69.52±3.49 0.36±0.07 Ecoli0vs1 98.64 ± 1.66
cleveland 60.13±3.03 0.33±0.06 Ecoli3 86.47 ± 10.6
contraceptive 55.18±1.23 0.29±0.02 Glass0 85.49 ± 4.07
japanese credit 88.49±3.00 0.76±0.06 Glass2 67.24 ± 9.62
ecoli 81.13±5.09 0.73±0.06 Glass5 94.86 ± 2.25
german credit data 75.19±1.36 0.33±0.04 Haberman 62.99 ± 4.99
glass identification 73.33±3.74 0.64±0.05 Iris0 100.0 ± 0.0
haberman 74.36±2.01 0.18±0.15 New-Thyroid1 100.0 ± 0.0
heart 85.28±5.3 0.69±0.11 Page-Blocks0 92.01 ± 0.61
hepatitis 93.86±6.23 0.69±0.37 Pima 77.99 ± 3.85
iris 95.31±3.21 0.92±0.04 Vehicle1 71.76 ± 3.93
lymphography 85.24±5.64 0.71±0.10 Vehicle3 70.21 ± 3.33
new-thyroid 97.99±2.39 0.95±0.05 Vowel0 97.62 ± 2.1
nursery 85.77±1.48 0.78±0.02 Wisconsin 97.73 ± 0.38
pima 79.13±2.57 0.51±0.06 Yeast2 69.8 ± 2.78
ring 94.99±1.46 0.89±0.02 Yeast4 80.99 ± 4.25
vehicle 73.11±2.49 0.64±0.03 Yeast5 95.93 ± 2.3
wine 98.51±2.15 0.97±0.03 Yeast6 88.34 ± 7.5

TABLE II: Percentage deletion (PD) and Compactness (Comp) results
for EDARIC

Standard Datasets Imbalanced datasets
Dataset PD Comp Dataset PD Comp
abalone 0.9483 0.8291 Abalone9-18 0.9935 0.9883
australian credit 0.8911 0.8103 Abalone19 0.9984 0.9963
liver disorders [Bupa] 0.6791 0.6724 Ecoli0vs1 0.9893 0.9760
cleveland 0.9350 0.9066 Ecoli3 0.99 0.9801
contraceptive 0.8746 0.8366 Glass0 0.9720 0.9379
japanese credit 0.8471 0.6807 Glass2 0.9755 0.9502
ecoli 0.9384 0.8887 Glass5 0.9931 0.9865
german credit data 0.8719 0.6972 Haberman 0.9749 0.9711
glass identification 0.8710 0.7798 Iris0 0.9681 0.9436
haberman 0.9917 0.9849 New-Thyroid1 0.9759 0.9522
heart 0.7617 0.5943 Page-Blocks0 0.9899 0.9747
hepatitis 0.9021 0.6707 Pima 0.9661 0.9546
iris 0.9726 0.9418 Vehicle1 0.9285 0.8305
lymphography 0.8859 0.6129 Vehicle3 0.9437 0.8403
new-thyroid 0.9503 0.9069 Vowel0 0.9880 0.9731
nursery 0.8359 0.8016 Wisconsin 0.9731 0.9373
pima 0.9746 0.9618 Yeast2 0.9939 0.9912
ring 0.9592 0.8407 Yeast4 0.9984 0.9976
vehicle 0.8543 0.6099 Yeast5 0.9980 0.9968
wine 0.9033 0.7227 Yeast6 0.9992 0.9991

TABLE III: Wilcoxon signed rank test summary between EDARIC
with selective deletion and EDARIC with random deletion. R+

corresponds to the sum of ranks for EDARIC with selective deletion
and R− for EDARIC with random deletion.

test R+ R− Hypothesis(α = 0.05) p-value
accuracy 28 0 Rejected for selective deletion 0.017960
kappa 28 0 Rejected for selective deletion 0.017960
g-mean 41 4 Rejected for selective deletion 0.028402

testing sample runs in linear time w.r.t. the number of rules
learnt.

III. EXPERIMENTAL STUDIES

In this section, we evaluate and compare the performance
of EDARIC on 20 standard and 20 imbalanced classification
problems. These problems have been the subject of many
studies in the machine learning society. The detailed de-
scription of these problems can be obtained from the Uni-
versity of California Irvine Machine Learning Repository,
http://archive.ics.uci.edu/ml/datasets.html.

1669

We followed the guidelines provided by Fernandez et al.
(2010) [14] to conduct experiments and used the same exact
same cross-validation partitions as was used there for a fair
comparison. We converted the continuous attributes into dis-
crete ones for EDARIC by using the Fayyad and Irani’s MDL
discretization scheme [5], which was implemented through
a data processing tool named Orange [13]. To compare
EDARIC’s performance with the other algorithms, we used
the accuracy and Cohen’s kappa measure for the standard
(balanced) data-sets and g-mean for imbalanced datasets. For
each data-set, we applied 5-iterated 5-fold cross validation and
considered the average results of 25 runs for comparison with
other works reported in [14]. To demonstrate the generalization
power of EDARIC, We also define some other performance
measures, like:

Compactness: The term compactness signifies how much
compact the learned rule-set is. If the size of the learned rule-
set is x% of the training dataset, then the rule-set is (100−x)%
compact. Mathematically,

Compactness = 1− Nr
N

(9)

Here, Nr is number of unique rules learnt and N is Number
of training rows.

Percentage deletion: The term percentage deletion (PD)
stands for the portion of alleles deleted from the best individual
to produce the unique generalized rules. Mathematically,

PD = 1− NAr
NAc

(10)

Here, NAr is total number of conjuncts in the final rule-set
and NAc is total number of alleles in any individual at the
initial stage of evolution.

As mentioned earlier, EDARIC uses very few parameters.
Important training parameters are α, γ and m which were set
to the values 0.7 (this means to put more weight on classi-
fier accuracy for fitness evaluation), 0.02 (a small constant)
and 40 (midway between over-sampling and under-sampling)
respectively. We did not change the values of any of these
parameters during evolution. However, θ was varied between
0 to 0.2 in the post-processing step.

A. Results

Table I shows the average performance of EDARIC on
different standard and imbalanced classification problems. It is
evident that EDARIC has a good testing accuracy, kappa and
g-mean. For example, in case of wine data-set, the average
testing accuracy of rules evolved by our method was 98.51%,
while it was 79.13% for the pima data-set.

Table II shows the Percentage Deletion (PD) and Compact-
ness (Comp) measures obtained by EDARIC for each data-
set that clearly demonstrates the generalization capabilities of
EDARIC. For example, for the Ecoli3 dataset, the evolved
rule-set was 98.01% compact and 99% of the alleles of the
best individual were deleted to create the general rules.

We now try to provide an experimental evidence of how the
algorithm converges in Fig. 2 by demonstrating the evolution

(a) negative class

(b) positive class

Fig. 2: Convergence for ecoli3 dataset

of separate populations for a particular dataset, Ecoli3. Clearly
evident from Fig.(2), as the number of generations increases,
the deletion amount as well as fitness value increases for both
positive and negative class. Note that, our algorithm sometimes
sacrifices higher training accuracy in order to keep the evolved
rule-set as general as possible (Fig. 2(a)).

B. Effect of selected deletion

To study the effects of selected deletion, we experimented
with a variation of EDARIC where the deletion of attributes
was done randomly instead of using the intelligent deletion
mechanism proposed in this work. All other components of
the two variants were same. For space constraints, we do not
present results for all the data-sets; rather we present results
for seven standard and nine imbalanced data-sets (Table IV).

From Tables IV, it can be observed that EDARIC with
selective deletion has better performance than EDARIC with
random deletion almost all the times. To see whether this
difference is statistically significant, we applied wilcoxon-
signed-rank-test on these results. Table III shows the summary
of the statistical test. Here, R+ corresponds to the sum of ranks
for EDARIC with selective deletion and R− for EDARIC with
random deletion. It shows that the null hypothesis has been
rejected in favor of EDARIC with selective deletion for all the
performance measures, i.e. accuracy, kappa and g-mean with
level of significance α= 0.05.

C. Comparison with other works

Table V summarizes the comparison of EDARIC and other
state-of-the-art LCS algorithms. A brief description of other
algorithms can be found in [14]. The average performance in
the table are the mean of the individual performances over
20 data-sets which are in turn the average of 25 runs over

1670

TABLE IV: Comparison of Results between EDARIC with selective deletion and random deletion

Standard Datasets Imbalanced Datasets
Dataset Selective deletion Random deletion Dataset Selective deletion Random deletion

Tst acc Tst kappa Tst acc Tst kappa Tst g-mean Tst g-mean
australian 87.82 ± 1.26 0.752 ± 0.0262 86.54 ± 1.77 0.725 ± 0.0369 abalone9-18 69.62 ± 8.87 70.52 ± 10.71
cleveland 60.13 ± 3.03 0.3324 ± 0.0674 58.57 ± 1.98 0.3174± 0.0528 glass0 85.49 ± 4.07 84.63 ± 4.75
crx 88.49 ± 3.0 0.767 ± 0.0613 86.73 ± 3.14 0.7313 ± 0.0646 glass2 67.24 ± 9.62 64.19 ± 8.44
heart 85.28 ± 5.3 0.6994 ± 0.1107 83.39 ± 6.03 0.662 ± 0.1241 glass5 94.86 ± 2.25 92.94 ± 4.32
hepatitis 93.86 ± 6.23 0.6969 ± 0.3779 92.26 ± 4.87 0.6229 ± 0.3434 haberman 62.99 ± 4.99 60.06 ± 3.52
lymphography 85.24 ± 5.64 0.7149 ± 0.1097 78.89 ± 6.91 0.5903 ± 0.1375 pima 77.99 ± 3.85 76.22 ± 3.92
pima 79.13 ± 2.57 0.5154 ± 0.0616 78.43 ± 2.39 0.5004 ± 0.0575 wisconsin 97.73 ± 0.38 97.28 ± 0.71

yeast2 69.8 ± 2.78 67.0 ± 3.17
yeast5 95.93 ± 2.3 95.83 ± 2.34

each individual data-set. The results of other algorithms were
collected from [14].

Table V demonstrates that EDARIC is better compared to
other algorithms in case of both standard and imbalanced
problems. In terms of accuracy, kappa and g-mean, our algo-
rithm outperforms all other algorithms by a significant margin,
from which the superiority of EDARIC is clearly evident. As
expected, results obtained by EDARIC in case of imbalanced
problems are more attractive than in case of balanced ones.

It is evident from Table V that the testing performance
of our algorithm does not vary too much with respect to
the training performance. This is true for both balanced and
imbalanced classification problems. For example, the average
training accuracy and the testing accuracy achieved by our
algorithm for the standard problems were 84.02% and 79.11%
respectively. For the imbalanced problems, average training
G-mean and testing G-mean achieved by our algorithm were
respectively 85.55% and 83.99%. All these results indicate
one point i.e., the techniques incorporated in EDARIC work
nicely in handling two prominent difficulties, over-fitting and
class-imbalance.

For a pair-wise comparison between EDARIC and other
algorithms, Wilcoxon signed rank test [28] was used. Table VI
shows the summary of pair-wise Wilcoxon signed rank test
between EDARIC and other LCS approaches for both standard
and imbalanced problems. Here, R+ corresponds to the sum of
ranks for EDARIC and R− for the compared algorithm. These
results show that null hypothesis has been rejected in favor
of EDARIC against all the compared evolutionary algorithms
with a significance level 0.05.

We also compare EDARIC with state-of-the-art non-
evolutionary techniques, namely, CART [7], AQ [21],
CN2 [10], C4.5 [24], C4.5 Rules [25] and Ripper [11] for
both standard and imbalanced problems. These results are
shown in Table VII. The corresponding Wilcoxon signed rank
test summary is in shown Table VIII. Wilcoxon signed rank
test rejects the null hypothesis in favor of EDARIC in all the
possible cases.

For better visualization, we show the box-plot and star-plot
of accuracy (in case of standard data-sets) for EDARIC and
other evolutionary as well as non-evolutionary approaches in
Figs. 3 and 4 respectively. Similarly, box-plot and star-plot of
g-mean (in case of imbalanced data-sets) are shown in Figs. 5

and 6 respectively. The box-plots demonstrate the median,
extreme values, quartiles etc. of the accuracy results. Star plots
represent the performance as the distance from the center;
hence a higher area determines better average performance.
Both the box-plots and star-plots demonstrate the superiority
of the proposed method.

Fig. 3: Box plot for Accuracy to compare EDARIC and other
evolutionary and non-evolutionary approaches

Fig. 4: Star plot of Accuracy to compare EDARIC and other evolu-
tionary and non-evolutionary approaches

IV. CONCLUSION

In this paper, we propose a new evolutionary system,
EDARIC, for rule extraction and classification. The idea be-
hind EDARIC is to put more emphasis on generality of rules,
rather than on specificity. The benefit of generality is avoid-
ance (or minimization) of over-fitting suffered. A number of
techniques have been adopted in our system to produce more
general rules. The intelligent batch deletion mechanism is one
such example which has ability to gradually convert more
specific rules to more general ones. Furthermore, evolution of

1671

TABLE V: Comparison of results between EDARIC and other state-of-the-art evolutionary approaches

Standard Datasets Imbalanced Datasets
Accuracy Kappa Gmean

Family Algorithm Training Test Rank Training Test Rank GMtrn GMtst Rank
Michigan XCS [29] 88.40 ± 2.64 75.39 ± 4.12 4.15 (2) 0.80 ± 0.05 0.55 ± 0.08 4.55 (3) 60.62 ± 10.30 47.97 ± 9.72 8.15 (9)

UCS [6] 92.10 ± 2.94 72.65 ± 5.58 7.35 (5) 0.84 ± 0.05 0.49 ± 0.11 7.25 (4) 72.36 ± 13.12 59.00 ± 16.55 6.55 (5)
IRL SIA [27] 99.09 ± 0.23 69.79 ± 3.58 8.60 (7) 0.98 ± 0.00 0.42 ± 0.06 8.35 (7) 99.28 ± 0.38 63.85 ± 9.49 5.95 (4)

HIDER [1] 85.43 ± 1.14 69.20 ± 3.64 8.60 (7) 0.70 ± 0.02 0.42 ± 0.07 9.05 (9) 55.12 ± 7.94 47.46 ± 11.05 9.20 (10)
CORE [26] 69.64 ± 3.29 66.92 ± 4.64 11.50 (13) 0.37 ± 0.07 0.07 ± 0.09 13.05 (16) 52.81 ± 10.26 47.72 ± 14.74 9.60 (11)

GCCL OCEC [20] 78.57 ± 3.28 67.08 ± 4.67 11.00 (12) 0.62 ± 0.05 0.43 ± 0.08 9.40 (10) 76.24 ± 3.74 67.10 ± 10.38 8.05 (8)
COGIN [17] 85.71 ± 1.59 63.31 ± 4.35 11.80 (14) 0.71 ± 0.03 0.37 ± 0.06 11.90 (14) 53.49 ± 10.65 40.62 ± 16.13 11.85 (15)
EDARIC 84.02 ± 1.08 79.11 ± 3.09 1.30 (1) 0.72 ± 0.02 0.62 ± 0.07 1.30 (1) 85.55 ± 1.54 83.99 ± 4.13 1.10 (1)
GIL [19] 77.37 ± 3.73 65.72 ± 5.19 12.45 (16) 0.62 ± 0.05 0.41 ± 0.08 10.45 (11) 75.92 ± 3.60 67.46 ± 9.87 7.45 (7)
Pitts-GIRLA [12] 77.91 ± 2.81 63.71 ± 10.10 11.85 (15) 0.61 ± 0.04 0.31 ± 0.15 12.50 (15) 48.24 ± 10.61 30.32 ± 17.52 12.45 (16)

Pittsburgh DMEL [2] 44.74 ± 5.84 42.89 ± 6.06 15.60 (17) 0.20 ± 0.06 0.12 ± 0.06 15.55 (17) 20.48 ± 10.26 18.26 ± 12.07 13.90 (17)
GASSIST [3] 84.06 ± 1.28 74.62 ± 3.71 4.60 (3) 0.71 ± 0.02 0.53 ± 0.07 4.35 (2) 68.33 ± 5.02 57.15 ± 9.69 6.65 (6)
OIGA [30] 78.13 ± 2.41 71.51 ± 4.14 7.70 (6) 0.57 ± 0.05 0.47 ± 0.08 8.40 (8) 59.61 ± 5.65 49.48 ± 10.65 9.95 (12)
ILGA [18] 75.50 ± 2.74 69.53 ± 4.28 9.35 (9) 0.53 ± 0.05 0.43 ± 0.08 10.50 (12) 53.87 ± 8.95 41.62 ± 11.12 11.60 (13)
DT-GA [9] 80.12 ± 1.86 72.83 ± 3.39 7.30 (4) 0.64 ± 0.03 0.49 ± 0.06 7.35 (5) 75.44 ± 7.81 66.35 ± 11.60 5.25 (3)

HEDT Oblique-DT [8] 99.73 ± 0.04 71.70 ± 3.34 9.60 (10) 0.99 ± 0.01 0.49 ± 0.06 8.15 (6) 99.94 ± 0.01 70.88 ± 8.55 4.85 (2)
TARGET [16] 69.61 ± 2.42 67.95 ± 4.02 10.00 (11) 0.45 ± 0.05 0.39 ± 0.08 10.80 (13) 33.97 ± 14.14 33.09 ± 14.68 11.80 (14)

TABLE VI: Pair-wise wilcoxon signed rank test summary between EDARIC and other evolutionary approaches. R+ corresponds to the sum
of ranks for EDARIC and R− for the compared algorithm. R in column Hypothesis(H) means null hypothesis is Rejected with α = 0.05

Standard Datasets Imbalanced Datasets
Accuracy Kappa G-mean

Family Algorithm R+ R− H p-value R+ R− H p-value R+ R− H p-value
Michigan EDARIC Vs XCS [29] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089

EDARIC Vs UCS [6] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
IRL EDARIC Vs SIA [27] 205 5 R 0.000189 204 6 R 0.000219 206 4 R 0.000163

EDARIC Vs HIDER [1] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs CORE [26] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089

GCCL EDARIC Vs OCEC [20] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs COGIN [17] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs GIL [19] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs Pitts-GIRLA [12] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089

Pittsburgh EDARIC Vs DMEL [2] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs GASSIST [3] 201 9 R 0.000338 202 8 R 0.000293 210 0 R 0.000089
EDARIC Vs OIGA [30] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs ILGA [18] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs DT-GA [9] 209 1 R 0.000103 209 1 R 0.000103 209 1 R 0.000103

HEDT EDARIC Vs Oblique-DT [8] 201 9 R 0.000338 202 8 R 0.000293 210 0 R 0.000089
EDARIC Vs TARGET [16] 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089

TABLE VII: Comparison of EDARIC and state-of-the-art non-evolutionary approaches

Standard Datasets Imbalanced Datasets
Accuracy Kappa Gmean

Algorithm Training Test Avg.Rank Training Test Avg.Rank GMtrn GMtst Avg.Rank
EDARIC 84.02 ± 1.08 79.11 ± 3.09 1.15 (1) 0.7260 ± 0.0251 0.6200 ± 0.0758 1.15 (1) 85.55 ± 1.54 83.99 ± 4.13 1.15 (1)
CART 85.17 ± 3.71 73.10 ± 3.91 3.85 (3) 0.7346 ± 0.0664 0.5070 ± 0.0744 3.80 (4) 79.69 ± 5.31 61.50 ± 11.51 4.35 (5)
AQ 79.27 ± 3.36 63.25 ± 5.18 6.25 (7) 0.6514 ± 0.0587 0.3554 ± 0.0971 6.25 (7) 60.32 ± 3.87 52.89 ± 8.72 5.90 (6)
CN2 79.95 ± 1.46 70.62 ± 3.51 4.85 (6) 0.6000 ± 0.0314 0.4143 ± 0.0746 5.80 (6) 49.36 ± 5.70 38.62 ± 12.09 6.30 (7)
C4.5 89.19 ± 1.47 73.98 ± 3.49 3.20 (2) 0.7911 ± 0.0362 0.5184 ± 0.0647 3.30 (2) 80.91 ± 6.01 69.62 ± 10.82 3.60 (4)
C4.5-Rules 81.43 ± 2.05 72.94 ± 4.10 3.90 (4) 0.6696 ± 0.0440 0.5079 ± 0.0779 3.75 (3) 81.13 ± 4.59 71.66 ± 10.23 3.15 (3)
Ripper 88.15 ± 2.42 70.81 ± 4.24 4.75 (5) 0.8023 ± 0.0387 0.5084 ± 0.0712 3.95 (5) 94.83 ± 0.86 74.14 ± 8.98 2.95 (2)

TABLE VIII: Wilcoxon signed rank test summary between EDARIC and state-of-the-art non-evolutionary approaches. R+ corresponds to the
sum of ranks for EDARIC and R− for the compared algorithm. R in column Hypothesis(H) means null hypothesis is Rejected with α = 0.05

Standard Datasets Imbalanced Datasets
Accuracy Kappa Gmean

Algorithm R+ R− H p-value R+ R− H p-value R+ R− H p-value
EDARIC Vs CART 209 1 R 0.000103 209 1 R 0.000103 210 0 R 0.000089
EDARIC Vs AQ 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs CN2 210 0 R 0.000089 210 0 R 0.000089 210 0 R 0.000089
EDARIC Vs C4.5 203 7 R 0.000254 204 6 R 0.000219 210 0 R 0.000089
EDARIC Vs C4.5-Rules 210 0 R 0.000089 210 0 R 0.000089 205 5 R 0.000189
EDARIC Vs Ripper 206 4 R 0.000163 205 5 R 0.000189 204 6 R 0.000219

1672

Fig. 5: Box plot for G-mean to compare EDARIC and other evolu-
tionary and non-evolutionary approaches

Fig. 6: Star plot of G-mean to compare EDARIC and other evolu-
tionary and non-evolutionary approaches

multiple populations and ensemble with post-processing step
in EDARIC helps in preserving valuable information about the
minority classes for imbalanced problems.

EDARIC has been tested on 20 standard and 20 imbalanced
benchmark classification data-sets obtained from UCI machine
learning repository. Superior results have been produced by
EDARIC in comparison with other algorithms as indicated in
section III. In its current implementation, EDARIC has a few
user-specified parameters although this is not unusual in the
field. One of the future improvements to EDARIC would be
to make these parameters adaptive. Another direction may be
to design EDARIC in the light of multi-objective optimization
concept.

Acknowledgments. The work has been done in the Com-
puter Science & Engineering Department of Bangladesh Uni-
versity of Engineering and Technology (BUET). The authors
would like to acknowledge BUET for its generous support.

REFERENCES

[1] J. S. Aguilar-Ruiz, R. Giraldez, and J. C. Riquelme. Natural encoding
for evolutionary supervised learning. Trans. Evol. Comp, 11(4):466–479,
Aug. 2007.

[2] W.-H. Au, K. C. Chan, and X. Yao. A novel evolutionary data mining
algorithm with applications to churn prediction. Trans. Evol. Comp,
7(6):532–545, Dec. 2003.

[3] J. Bacardit and J. M. Garrell. Evolving multiple discretizations with
adaptive intervals for a pittsburgh rule-based learning classifier system.
In Proceedings of the 2003 international conference on Genetic and
evolutionary computation: PartII, GECCO’03, pages 1818–1831, Berlin,
Heidelberg, 2003. Springer-Verlag.

[4] J. Bacardit and J. M. Garrell. Bloat control and generalization pressure
using the minimum description length principle for a pittsburgh approach
learning classifier system. In Proceedings of the 2003-2005 international

conference on Learning classifier systems, IWLCS’03-05, pages 59–79,
Berlin, Heidelberg, 2007. Springer-Verlag.

[5] R. Bajcsy, editor. Proceedings of the 13th International Joint Conference
on Artificial Intelligence. Chambéry, France, August 28 - September 3,
1993. Morgan Kaufmann, 1993.

[6] E. Bernadó-Mansilla and J. M. Garrell-Guiu. Accuracy-based learning
classifier systems: models, analysis and applications to classification
tasks. Evol. Comput., 11(3):209–238, Sept. 2003.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[8] E. Cantu-Paz and C. Kamath. Inducing oblique decision trees with
evolutionary algorithms. Trans. Evol. Comp, 7(1):54–68, Feb. 2003.

[9] D. R. Carvalho and A. A. Freitas. A hybrid decision tree/genetic
algorithm method for data mining. Inf. Sci., 163(1-3):13–35, June 2004.

[10] P. Clark and T. Niblett. The cn2 induction algorithm. Mach. Learn.,
3(4):261–283, Mar. 1989.

[11] W. W. Cohen. Fast effective rule induction. In In Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123.
Morgan Kaufmann, 1995.

[12] A. L. Corcoran and S. Sen. Using real-valued genetic algorithms to
evolve rule sets for classification. In In IEEE-CEC, pages 120–124,
1994.

[13] J. Demar, B. Zupan, G. Leban, and T. Curk. Orange: From experimental
machine learning to interactive data mining. In J.-F. Boulicaut, F. Es-
posito, F. Giannotti, and D. Pedreschi, editors, Knowledge Discovery in
Databases: PKDD 2004, volume 3202 of Lecture Notes in Computer
Science, pages 537–539. Springer Berlin Heidelberg, 2004.

[14] A. Fernández, S. Garcı́a, J. Luengo, E. Bernadó-Mansilla, and F. Herrera.
Genetics-based machine learning for rule induction: state of the art,
taxonomy, and comparative study. Trans. Evol. Comp, 14(6):913–941,
Dec. 2010.

[15] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. In Foundations of Genetic Algorithms, pages
69–93. Morgan Kaufmann, 1991.

[16] J. B. Gray and G. Fan. Classification tree analysis using target. Comput.
Stat. Data Anal., 52(3):1362–1372, Jan. 2008.

[17] D. P. Greene and S. F. Smith. Competition-based induction of decision
models from examples. Mach. Learn., 13(2-3):229–257, Nov. 1993.

[18] S.-U. Guan and F. Zhu. An incremental approach to genetic-algorithms-
based classification. Trans. Sys. Man Cyber. Part B, 35(2):227–239, Apr.
2005.

[19] C. Z. Janikow. A knowledge-intensive genetic algorithm for supervised
learning. Mach. Learn., 13(2-3):189–228, Nov. 1993.

[20] L. Jiao, J. Liu, and W. Zhong. An organizational coevolutionary
algorithm for classification. Trans. Evol. Comp, 10(1):67–80, Sept. 2006.

[21] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The Multi-Purpose
Incremental Learning System AQ15 and Its Testing Application to Three
Medical Domains. In Proceedings of the Fifth National Conference on
Artificial Intelligence, 1986.

[22] A. Orriols-Puig and E. Bernad-Mansilla. Evolutionary rule-based
systems for imbalanced data sets. Soft Computing, 13(3):213–225, 2009.

[23] A. Orriols-Puig, E. Bernadó-Mansilla, D. E. Goldberg, K. Sastry, and
P. L. Lanzi. Facetwise analysis of xcs for problems with class
imbalances. Trans. Evol. Comp, 13(5):1093–1119, Oct. 2009.

[24] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[25] J. R. Quinlan. Mdl and categorical theories (continued). In In Machine
Learning: Proceedings of the Twelfth International Conference, Lake
Taho, pages 464–470. Morgan Kaufmann, 1995.

[26] K. C. Tan, Q. Yu, and J. H. Ang. A coevolutionary algorithm for rules
discovery in data mining. International Journal of Systems Science,
37(12):835–864, 2006.

[27] G. Venturini. Sia: A supervised inductive algorithm with genetic search
for learning attributes based concepts. In Proceedings of the European
Conference on Machine Learning, ECML ’93, pages 280–296, London,
UK, UK, 1993. Springer-Verlag.

[28] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[29] S. W. Wilson. Classifier fitness based on accuracy. Evol. Comput.,
3(2):149–175, June 1995.

[30] F. Zhu and S.-U. Guan. Ordered incremental training with genetic
algorithms. Int. J. Intell. Syst., 19(12):1239–1256, Dec. 2004.

1673

