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Forecasting Time Series - A Layered Ensemble Architecture
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Abstract— Time series forecasting (TSF) have been widely
used in many application areas such as science, engineering
and finance. The characteristics of phenomenon generating
a series are usually unknown and information available for
forecasting is only limited to the past values of the series.
It is, therefore, necessary to use an appropriate number of
past values, termed lag, for forecasting. This paper presents
a layered ensemble architecture (LEA) for TSF problems.
Our architecture is consisted of two layers, each of which
uses an ensemble of neural networks. Unlike most previous
studies on TSF, LEA puts emphasis on both accuracy and
diversity among individual networks in an ensemble. While the
ensemble of the first layer tries to find an appropriate lag of
a given time series, it of the second layer makes forecasting
using the obtained lag. The use of the appropriate lag signifies
LEA’s effort in producing accurate networks for constructing
the ensemble. In order to maintain diversity among networks
in the ensemble, LEA trains each network in the ensemble
using a different training set. The proposed architecture uses a
clustering based selection method that considers both accuracy
and diversity in selecting networks to construct the ensemble.
Accuracy is maintained here by selecting the best networks
from each cluster. On the other hand, diversity is ensured by
using the variance information in constructing clusters. LEA
has been tested extensively on the time series data sets of NN3
competition. In terms of prediction accuracy, our experimental
results have showed clearly that LEA is better than other
ensemble and non-ensemble algorithms.

[. INTRODUCTION

IME series forecasting (TSF) has been widely used in

many application areas such as science, engineering and
finance. It is the use of a model or technique to predict
future values based on previously observed values. Generally,
the characteristics of phenomenon generating time series are
unknown and information available for forecasting is only
limited to the past values of the series. It is thus important
to use an appropriate number of past values, termed lag, for
forecasting [1], [2].

The immense interests for understanding and predicting
the future gives us many forecasting methods; most of them
are relying on linear and non-liner statistical models [3], [4].
The limitations of the statistical models make the multi-layer
perceptron (MLP) network, a kind of neural network, as a
promising alternative to the forecasting society [5], [6], [7].
Although it has been shown that the MLP network is an uni-
versal approximator, no general guideline exists in choosing
the appropriate network structure for a given problem. An
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ensemble of networks that brings together several networks
to provide a single output alleviates the difficulty associated
with the conventional design strategy for designing a single
network with appropriate parameters.

The main issue in ensemble approaches is the considera-
tion of accuracy and diversity of individual networks (base
predictors) that constitute an ensemble [8]. Existing ensemble
approaches for TSF problems employ different techniques
for maintaining diversity without considering accuracy of the
base predictors. For example, some work uses bagging [9],
boosting [10] or a combination of bagging and random
subspace [1] to create a different training set for each base
predictor. A different lag is also used for creating a different
training set [11]. The authors in [12] use different training
parameters to generate different base predictors. In [13],
different types of base predictors are used for constructing
ensembles. A careful scrutiny of the existing methods re-
veals that they emphasize diversity either by using different
training sets, different parameters of the base predictors or
different types of base predictors.

This paper proposes a layered ensemble architecture
(LEA) for TSF. Our LEA is consisted of two layers; each of
which uses an ensemble of neural networks. The essence of
LEA is that it considers both accuracy and diversity not only
in generating individual networks, but also in combining the
networks to construct ensembles. The proposed architecture
has been tested extensively on the time series data of NN3
competition [14].

The rest of this paper is organized as follows. Section II
describes our LEA algorithm in details. Section III presents
results of our experimental study. Finally, section IV con-
cludes the paper with a few remarks for future directions.

II. LAYERED ENSEMBLE ARCHITECTURE

In order to reduce the detrimental effect of using a pre-
defined lag and to devise an efficient forecasting scheme, a
layered ensemble approach, LEA, is adopted in this work.
Ensembles’ requirement for maintaining diversity and accu-
racy among the base predictors match well with our emphasis
on using a layered architecture. In its current implementation,
LEA uses MLP networks as base predictors.

The major steps of LEA can be explained as follows.

1) Preprocess data of a given time series for handling

seasonality, noise and missing attribute values.

2) Hold out m data points (observations) for testing LEA
and use the remaining observations for constructing a
forecasting model.

3) Ensemble Layer 1

a) Generate an ensemble consisting of N MLP
networks. Here N is a user-defined parameter and



greater than /,,,., the maximum lag of the series.
For example, I,,4, can be 12 for a monthly time
series.

Assign a random lag, /;, to the network i of
the ensemble. This can be done by generating a
number uniformly at random between 1 and /4.
Define the architecture of each network in the
ensemble. The network has an input layer, a
hidden layer and an output layer. The number of
nodes in the input and hidden layers equals to the
lag assigned to the network, while the number of
nodes in the output layer is one.

Create N training sets, one for each network,
using the lags assigned to all N networks in the
ensemble.

Train each network in the ensemble on the train-
ing set generated for it by using the Levenberg-
Marquardt (LM) algorithm [15].

Evaluate each network in the ensemble on a
validation set containing n data points. The sym-
metric mean absolute percent error (SMAPE) is
used for evaluation. According to [14], SMAPE
can be expressed as
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where V; and Y; are the true and predicted
values for the s-th data point, respectively. The
above equation provides a value between 0% and
200%. The smaller the SMAPE is, the better the
prediction accuracy is. We use SMAPE because it
is used in many previous studies (e.g. [16], [17])
and forecasting competitions (e.g. NN3 [14],
NNb5 [18]). However, any other performance mea-
sure can be used for evaluating the networks.

Obtain the ensemble output by combining the
outputs of the individual networks. We use a
model selection and combination method (Algo-
rithm 1) to obtain the ensemble output. Since the
aim of the first layer is to find appropriate lag,
the ensemble output for this layer will be a lag.

4) Ensemble Layer 2

a)
b)

c)

Generate an ensemble consisting of N MLP
networks.

Assign the same lag, which is obtained by the
first layer, to each network in the ensemble.
Define the architectures of networks in the same
way as described in the step 3c. Note that the
architectures of all N networks in this layer will
be same, because the lag assigned to all the
networks is same.

Create a training set, Dy, using the lag.

Train each network, j, in the ensemble on a
training subset, D?,., using the LM algorithm [15].
The training subset is to be created from D, by
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using a re-sampling technique (e.g. bagging [19]
or boosting [20]).

f) Use the model selection and combination scheme
(Algorithm 2) to obtain the output of the ensem-
ble, which will indicate the final forecast.

The above layered ensemble architecture appears to be
straight forward, but its essence is the techniques incorpo-
rated for maintaining accuracy and diversity among the base
predictors of an ensembles. Our LEA also exhibits some
additional features. Details of them are given in the following
sections.

A. Data Preprocessing

1) Noise Removal: In many TSF problems (e.g. time
series of NN3 [14]), data points in the time series are heavily
influenced by noise. A data point is considered as noise, if its
value is very much different from other values of the series.
Failure to take appropriate measures against noise may lead
to a bad forecasting performance.

There are several ways by which one can remove noise
from the time series data. For example, a large second order
difference value is used as an indication of noise in [21].
In this paper, we use a noise detection mechanism proposed
n [11], where a data point is identified as a noise whose
absolute value is four times greater than the absolute medians
of the three consecutive points before and after that point.
That is, Y; is a noise if it satisfies the condition: ¥; > 4 x
max{|mg|, |myp|}, where m, = median(Y;_3,Y;_2,Y;_1)
and m, = median(Yi43,Yiy2,Yir1). When a data point
is identified as a noise, its value is simply replaced by the
average value of the two points that are immediately before
and after it.

2) Deseasonalization: Treatment of seasonality is one of
the major issues in TSF literature, because many time series
data [14], [18] contain some seasonality. There are basically
two methods, namely, direct and deseasonalized, for handling
seasonality [22]. In the direct method, the base predictors are
trained directly on the raw data, whereas in the latter method,
seasonal adjustments are made on the raw data before the
predictors are trained on.

For the seasonal series, we adopt a simple deseasonaliza-
tion procedure suggested in [23] which simply subtracts the
seasonal average from the series to obtain a deseasonalized
series. To make final forecast, we restore back the seasonality
to provide the output of the forecasting model.

B. Training Set Generation

The aim of our ensemble layer 1 is to find the appropriate
lag. Lacking of knowledge about such a lag enforces LEA
to vary the lag from 1 to /,,,., and LEA generates a different
training set using each of different lags. Let the lag equals to
5 and the data points d1, da, ..., d; are used for generating
the training set. The generation process takes the lag as a
window and shifts it in generating the training set. That is,
X1 =d;...ds and Yi =ds, Xo =ds...dg and Yo = dy
and this process continues until the Y; reaches at the end of



the series i.e., dy. Here X; represents the training set and Y;
is the target output.

In the ensemble layer 2, the training sets for base pre-
dictors are generated in two steps. At the first step, using
the lag obtained from the ensemble layer 1 and the data
points di,ds,...,dy, LEA generates the training set, Dj,.
In the second step, bootstrapped sampling (e.g. bagging [19],
boosting [24]) is applied on Dy, for generating /N training
subsets D7, where j =1,2,... N.

Model selection and combination algo-

Algorithm 1:
rithm in ensemble layer 1
1: Require: Ensemble size N, number of clusters c.
:fori=1to0 N do
calculate the variance of each MLPs ;.
. end for
: Cluster the N MLPs into c classes (¢ < N) according
to their variance value.
6: Select one MLP from each cluster which has lowest
SMAPE over validation set in that cluster.
7. For each selected MLP record the corresponding lag
which is assigned to that MLP.
8: Provide the final lag using the average of the lag of the
selected MLP and then apply flooring on the average
value to obtain an integer value.

O B W N

end

C. Model Selection for Ensemble

Since LEA has two different layers of ensembles, it is
necessary to use a proper selection and combination method
so that the objective of each layer can be achieved. To
provide a better forecast, we improvise a clustering based
model selection and combination method. The essence of
our method is that it considers both accuracy and diversity
of the MLP networks so that they could constitute a good
ensemble.

We use variance, i.e., the performance variation of an
MLP network due to the variation of a data set, for ensuring
diversity. The computation of variance is quite straight
forward. For each MLP, we first vary its training set by
adding random noise and calculate how much error it
makes. Then calculate variance based on the errors. We
form clusters using the variance information of all the
generated networks. To construct an ensemble, we select
the best MLP network from each cluster. It indicates our
objective of considering accuracy in forming ensembles.
For ensemble layer 1, we select the best network based on
SMAPE from each cluster and also record the associated
lag of that MLP. Since the target of ensemble layer 1 is the
optimal lag for a time series we simply take the average
of the lag of MLPs. To obtain an integer value of that
average, we simply apply flooring on the resultant value.
For the ensemble layer 2, we select the best network based
on sMAPE from each cluster and combine all the selected
networks by weighted average. The weight of a network
is inversely proportional to its corresponding sSMAPE over
the validation set. The pseudo code of the whole process is

212

given in Algorithm 1 and 2.

Algorithm 2:  Model selection and combination algo-
rithm in ensemble layer 2
1: Require: Ensemble size N, number of clusters c.
fori=1to N do
calculate the variance of each MLPs ;.
end for
Cluster the N MLPs into ¢ classes (¢ < N) according
to their variance value.
6: Select one MLP from each cluster which has lowest
SMAPE over validation set in that cluster.
7. For each selected MLP calculate combination weight
using their SMAPE.
8: For each selected MLP perform out-of-sample predic-
tion.
9: Provide the final
weighted average.

OB W N

out-of-sample forecast using

end

D. Accuracy and Diversity

Our LEA considers both accuracy and diversity in its two
layers of ensembles. As mentioned earlier, LEA uses MLP
networks as the base predictors in constructing ensembles.
In the ensemble layer 1, it uses different lags for different
networks for finding an appropriate lag of a given time
series. To ensure accuracy among the networks of this layer,
we use the same lag and architecture for several networks,
since [ is randomly chosen in [1,/,,4,.]. We thus choose
N >> [,,,. with an hope that some of the networks will
exhibit better performance compared to others. This will
help in reaching towards the goal of the ensemble layer
1, i.e., finding an optimum or a near optimal lag. Since
the lag parameter is vital for an accurate forecast, LEA
uses the best lag obtained by the ensemble layer 1 and
its associated network architecture for the networks of the
ensemble layer 2. Note that the task of the ensemble layer
2 is forecasting. Furthermore, our selection and combination
methods (algorithm 1 and 2) choose the best network from
each cluster to construct ensembles for the layer 1 and 2.
All these techniques indicate LEA’s effort in encouraging
accuracy of the networks.

LEA uses a different lag for each network in the ensemble
layer 1. As the lag parameter determines the number of
input neurons in the MLP networks and the construction of
the training data, these two properties will ensure diversity
among the networks of the first layer. The diversity among
the networks of the second layer is ensured by training them
using different training sets. In addition to that LEA uses
a combination strategy that encourages diversity by using
variance in selecting networks for constructing ensembles
(Algorithm 1 and 2). In summary, all the techniques incor-
porated in LEA serve the three important points for TSF.
Firstly, LEA preserves the autocorrelation information of the
time series by using the appropriate lag. Secondly, it helps
to construct an ensemble by combining accurate and diverse
members. Thirdly, it increases the probability to get better



final forecast.

III. EXPERIMENTAL STUDIES

In this section, we evaluate and compare the performance
of LEA using the NN3 time series competition dataset [14].
Organizers of this competition categorize the time series into
long and short based on the length of series. The short series
contains less than 50 data points, while the long one contains
more than 50 data points. According to the characteristics of
data, the time series can be further categorized into seasonal
and non seasonal. In a seasonal time series, there exists
regularly spaced peaks and troughs that have a consistent
direction and approximately have the same magnitude at
every period. These are, however, not present in a non-
seasonal one.

A. Performance Measure

The performance of a forecasting model is usually evalu-
ated by some accuracy measure. The SMAPE is used in NN3
competition. However, to make exhaustive evaluation, we use
Median Root Absolute Error (MdRAE) and Mean Absolute
Scaled Error (MASE) in addition to SMAPE. The MdRAE
and MASE measures can be expressed as

MdARAE = median(|r;|), i = -

> i leil 5
MASE = — 5= L e=Y,—-Y, (3)
n—1 Zi:Q |Yi - Yi—1|

where Y;* is the forecast made by a reference method, i.e.,
random walk [25], applied on the series data for a given
forecast horizon h.

B. Experimental Setup

A MLP network containing one hidden layer with the tanh
sigmoid activation function and linear activation function
for the output nodes is used as the base predictor for the
ensemble layers 1 and 2. The ensemble in both the layer 1
and 2 are consisted of 50 MLP networks. According to [14],
we withhold the last 18 data points of every time series for
testing and use the remaining data points for building fore-
casting models. The layer based ensemble architecture for
TSF proposed in this paper is implemented using MATLAB
(R2012a, The Mathworks, Inc., Natick, MA, USA).

IV. RESULTS

We first compare our LEA with basic bagging to show the
effect of layering in the ensemble design for TSF problem.
We then compare LEA with several other ensemble, non-
ensemble and benchmark statistical methods.
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A. Comparison with bagging

As mentioned in section II, LEA re-samples 5% data
points to create different training sets for different base
predictors of the ensemble layer 2. To make a fair comparison
with bagging, LEA uses here bagging as a method for re-
sampling. We call this version of LEA as layered bagging.
The value of b used for LEA is set to 9%.

Tables I-IV and Figs. 1-3 show the results of basic bagging
and layered bagging. Several observations can be made from
the results summarized in the tables.

« It can be seen that the lag obtained by the ensemble
layer 1 of LEA is different for different time series
(Table I). These results indicate that it is very important
to determine the lag of a given time series automatically.
Note that the basic bagging algorithm uses the same
lag for all time series. According to the suggestion of
NN3 [14], the lag is set to 12 for basic bagging.

« Interms of average SMAPE, MASE and MdRAE, layered
bagging is found better than basic bagging irrespective
of the nature of time series i.e., seasonal, non-seasonal,
long or short. The performance of layered bagging is
found more consistent compared to bagging across dif-
ferent time series. This can be observed by looking the
standard deviation (std) of these two methods (Tables II-
I1I).

« To get an idea about the performance on different time
series, we count the number of times layered bagging
is better (or worse) compared to bagging. Using any
error measurement, if layered bagging exhibits better
performance than bagging for a specific time series, we
call it as a win for layered bagging; otherwise, it is
a loss. Once again, layered bagging is proved superior
than basic bagging with respect to three different per-
formance metrics (Table IV).

o We present the series wise performance of the layered
bagging and the basic bagging in Figs. 1-3, where the
numbers 1, 2,...,103 used for identifying 103 different
time series. It can be observed from these figures that
the errors of the basic bagging surround those of the
layered bagging in all most all case irrespective of the
performance metric used. That is, the basic bagging
produces more error compared to the layered bagging
for most of the time series we consider in this study.

We use the Wilcoxon-signed-rank test to assess whether
the performance difference between the layered bagging and
the basic bagging is statistically significant. Table V shows
the summary of the Wilcoxon-signed-rank test based on the
SMAPE, MASE and MdRAE for the four different types time
series. Here, R™ corresponds to the sum of ranks for layered
bagging and R~ for the basic bagging algorithm. The results
show that the null hypothesis has been rejected in favor of
layered bagging with a significance level 0.05 for seasonal,
non-seasonal, short and long time series.



TABLE I
LAG OBTAINED FROM THE ENSEMBLE LAYER 1 OF LEA FOR DIFFERENT
TIME SERIES DATA OF NN3 [14] COMPETITION

seasonal  non short long
seasonal
mean 7.3529 6.7674 7.0600  7.1803
LEA minimum 1 1 1 1
maximum 12 12 12 12
std 3.2816 3.3441 3.3649  3.2788
TABLE II

COMPARISON BETWEEN BASIC BAGGING AND LAYERED BAGGING IN
TERMS OF SMAPE, MASE AND MdRAE FOR SEASONAL AND
NON-SEASONAL TIME SERIES DATA OF NN3 [14] COMPETITION. HERE
THE BEST RESULT IS HIGHLIGHTED USING BOLDFACE TEXT.

| Basic Bagging Layered Bagging

= Layered Bagging
Basic Bagging

\ SMAPE MASE MdARAE \ SMAPE MASE MdARAE
mean | 14.220 1.380 0.618 13.270 1242 0.546
seasonal min |0.875  0.484 0.206 0.806 0.442 0.185
max |60.584 8.324 1.291 61.140 4.886 1.096
std | 11.784 1.174 0.246 12.023  0.907 0.236
mean | 17.963 0.940 0.694 16.612 0.686 0.571
non seasonal min |5.819 0499 0.289 4198  0.296 0.204
max |76.622 2516 2.227 81.617 1724 0.977
std [13.703 0.501 0.340 13.633 0.273  0.209
TABLE III

COMPARISON BETWEEN BASIC BAGGING AND LAYERED BAGGING IN
TERMS OF SMAPE, MASE AND MdRAE FOR SHORT AND LONG TIME
SERIES DATA OF NN3 [14] COMPETITION. HERE THE BEST RESULT IS
HIGHLIGHTED USING BOLDFACE TEXT.

| Basic Bagging Layered Bagging

| SMAPE MASE MdRAE | SMAPE MASE MdRAE
mean | 14.333  0.960  0.597 13.599 0.755  0.500
short min |5.819 0499 0.206 4198 0296 0.185
max |40.682 2523 2.227 44714 2378 0.977
std 8226  0.535 0.348 8423 0356 0.213
mean | 16.766 1.415 0.689 15.357 1249 0.601
long min |0.875 0484 0.273 0.806  0.442 0.204
max |76.622 8324 1.291 81.617 4.886 1.096
std 15320 1213 0.220 15.397 0944 0.227
TABLE IV

COMPARISON BETWEEN BASIC BAGGING AND LAYERED BAGGING IN
TERMS OF WIN-LOSS COUNT FOR THE TIME SERIES DATA OF NN3 [14]
COMPETITION. HERE THE BEST RESULT IS HIGHLIGHTED USING
BOLDFACE TEXT.

Performance Number of Wins
Metrics
Basic Layered
Bagging  Bagging
SMAPE 26 85
MASE 32 79
MdRAE 25 86
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Fig. 1. Comparison between basic bagging and layered bagging in terms
of SMAPE on time series data of NN3 [14] competition using star plot.

" Layered Bagging
Basic Bagging

Fig. 2. Comparison between basic bagging and layered bagging in terms
of MdRAE on time series data of NN3 [14] competition using star plot.

B. Analysis

In order to understand the reasons behind the better perfor-
mance of LEA, we analyze the ensembles produced by lay-
ered bagging and basic bagging. We employ bhias-variance-
covariance decomposition, double fault and disagreement for
analysis.

1) Bias-Variance-Covariance Estimation: Mean-squared-
error (E,,s.) of an ensemble can be decomposed into hias
(Epiqs), variance (E,4,-) and co-variance (F.,,). For regres-
sion problems, this decomposition has been widely used
(e.g. [26]) for analyzing the performance of ensembles and
can be expressed as
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Fig. 3. Comparison between basic bagging and layered bagging in terms
of MASE on time series data of NN3 [14] competition using star plot.

TABLE V
WILCOXON SIGNED RANK TEST SUMMARY BETWEEN LAYERED
BAGGING AND BASIC BAGGING FOR THE TIME SERIES DATA OF
NN3 [14] COMPETITION.

Performance RT R~ p-value Null hypothesis
Metrics Significance level=0.05
sMAPE 1899 447 9.16E-06 Rejected for layered bagging
Seasonal MASE 1802 544 0.00012 Rejected for layered bagging
MdJRAE 1867 479 2.2E-05 Rejected for layered bagging
SMAPE 819 127 2.94E-05 Rejected for layered bagging
Non-seasonal MASE 749 197 0.0086 Rejected for layered bagging
MdRAE 787 159 0.00016 Rejected for layered bagging
SMAPE 1068 207 3.24E-05 Rejected for layered bagging
Short MASE 930 345 0.00048 Rejected for layered bagging
MdRAE 1085 190 1.56E-05 Rejected for layered bagging
sMAPE 1564 327 8.89E-06 Rejected for layered bagging
Long MASE 1560 331 1.02E-05 Rejected for layered bagging
MdRAE 1512 379 4.72E-05 Rejected for layered bagging

(4)

The above equation indicates that to achieve good perfor-
mance, the hias, variance and covariance of the ensemble
should be small.

To obtain bias, variance and co-variance of an ensemble
architecture, we follow the experimental methodology sug-
gested in [26]. According to [26], several (say, 25) simu-
lations of each ensemble architecture has to be conducted.
The only difference in different simulations is the training
sets used for training the base predictors. Since the NN3
competition [14] contains a large number of time series, we
select only one series from each of the four different types of
time series, namely the series number 71, 73, 2 and 110 for
seasonal, non-seasonal. short and long series, respectively.
However, similar results can be obtained for other series.

Table VI summarizes the results of the bias-variance-
covariance decomposition of layered bagging and basic bag-

Emse = Ebias + Evar + Ecov
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TABLE VI
COMPARISON BETWEEN LAYERED BAGGING AND BASIC BAGGING IN
TERMS OF AVERAGE BIAS, VARIANCE AND CO-VARIANCE
DECOMPOSITION FOR THE TIME SERIES DATA OF NN3 [14]
COMPETITION. HERE THE BEST RESULT IS HIGHLIGHTED USING
BOLDFACE TEXT.

Evias Evar Ecov Emse

Seasonal 0.0705 4.21E-04 0.0101 0.0810

Layered Non-seasonal 0.0513 4.40E-04 0.0055 0.0572
Bagging Short 0.0538 8.55E-04 0.0317 0.0863
Long 0.0419 7.87E-04 0.0276 0.0702
Seasonal 0.1026 4.63E-04 0.0046 0.1076

Basic Non-seasonal 0.0874 3.00E-03 0.0376 0.1280
Bagging Short 0.0735 1.20E-03 0.0476 0.1223
Long 0.1157 6.78E-04 0.0112 0.1275

ging. It can be observed from the table VI that layered
bagging provides less bias than basic bagging. Once again,
the effectiveness of achieving the accurate lag from layer 1
of layered bagging is evident here. Apart from this, layered
bagging also produces less variance and covariance in most
of the cases than bhasic bagging. The positive effect of less
bias, variance and co-variance is the less Fy;sg, as shown
in the last column of the table VI. Like sSMAPE, MdRAE and
MASE, layered bagging also defeats here basic bagging.

2) Disagreement and double fault: Now we like to ana-
lyze layered bagging and basic bagging based on their ability
to generate diverse ensemble members using disagreement
and double fault measurement. The disagreement (D g4 {1,,})
and double fault (Dg¢y,y, ) between two predictors m and
n can be expressed as

NOI +N10
Daafmmny = N1 01 10 00 ®)
+ N4+ N0 N
NOO
Dap{mny = N1 4 NOL ;- N10 4 00 (6)

Let NV be the number of instances, 1 denotes correct clas-
sification and 0 denotes incorrect classification. In Egs. (5)
and (6), N denotes the number of examples that the first
predictor m puts label i on a particular example, while
the second predictor n puts label j on the same example.
To use disagreement and double fault measures for TSF
problems, we use the extension suggested in [27]. From
Eqgs. (5) and (6), it is evident that a larger disagreement value
indicates better diversity. In contrast, a larger double-fault
value indicates worse diversity.

Table VII summarizes the average result of disagreement
and double fault for basic bagging and layered bagging for
111 time series. It can be observed that in terms of double
fault, layered bagging is generating more diverse ensemble
than basic bagging irrespective of the nature of the time
series. Since layered bagging is trying to enforce accuracy
among the members of an ensemble, it is obvious that the
number of instances for which a pair of MLPs makes mistake
will be less. This is the main reason for obtaining better
double fault results by our approach for all four different



TABLE VII
COMPARISON BETWEEN BASIC BAGGING AND LAYERED BAGGING IN
TERMS OF DISAGREEMENT AND DOUBLE FAULT FOR SEASONAL,
NON-SEASONAL, SHORT AND LONG TIME SERIES DATA OF NN3 [14]
COMPETITION. HERE THE BEST RESULT IS HIGHLIGHTED USING
BOLDFACE TEXT.

| Basic Bagging Layered Bagging
disagree double[disagree double
fault fault
Seasonal 0.255 0.393 0.271  0.365
Non-seasonal|{0.352  0.342 |0.321 0.319
Short 0.370  0.390 [0.327 0.361
Long 0.228 0.359 [0.260 0.335
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Fig. 4. Boxplot Comparison of SMAPEs of our proposed scheme using

different ensemble size

types of time series. In terms of disagreement, both basic
bagging and layered bagging are better for two cases.

C. Effect of Ensemble size

To understand the effect of ensemble size, we vary the
ensemble size from 30 to 70 and present the average perfor-
mance of LEA over 111 time series of the NN3 competition.
Fig. 4 illustrates the result obtained using average sMAPE for
different size of ensemble. It is evident from this figure that
increasing the size of an ensemble increases its performance.
For example, the average sMAPE reduces from 16.47% to
14.56% when we increase the size of the ensemble from 30 to
50. However, increasing the size beyond 50 is not enhancing
the performance rather in some case giving inferior results.
So, for the sake of computational cost, we prefer to choose
50 is the optimal size of ensemble for the dataset of NN3
competition [14].

D. Effect of Data Re-sampling Rate

In ensemble layer 2 of LEA, we apply random re-sampling
on the dataset D;, to obtain a set of dataset to train each
member of ensemble. Unlike basic bagging which uses a
data re-sampling rate of 36.2% percentage, we apply here an
adaptive strategy to obtain a best data re-sampling rate.
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Since the most of the time series data of NN3 [14] contains
data point between 69 to 150, a data re-sampling rate of
36.2% will cause a huge loss of correlation information
among the time series data. So we start with a data re-
sampling rate of 7% and increments it up to 10. Fig. 5
illustrates the average SMAPE obtains over 111 time series
data of NN3 competition for the data re-sampling rate of
7%, 8%, 9% and 10% respectively. From the Fig. 5 it is
evident that a data re-sampling rate of 9% gives the best
result and thats why we uses a data re-sampling rate of 9%
in our experiment.

E. Comparison with other work

The NN3 competition attracts 59 submissions from com-
putational intelligence (CI) based methods and statistical
methods, making it the largest CI competition on time series.
We choose the best five benchmarked statistical methods
and the best five CI based methods for our comparison.
Detailed description of these methods can be found in [28].
Furthermore, we choose recently proposed ensembles of RBF
networks by Yan [11] for comparison.

Table VIII presents the average results over 111 time
series of layered bagging. The result of one algorithm is
collected from [11] and 10 other algorithms are compiled
from [28]. The model IDs with letter C as prefix stand for
CI based models and those with letter B stand for statistical
benchmark models. It can be observed from this table that
layered bagging beats not only CI based methods but also
the benchmarked statistical methods in terms of average
SMAPE, MASE and MdRAE. This comparison indicates that
the layered ensemble approach with proper techniques for
maintaining accuracy and diversity is useful for obtaining a
good forecasting accuracy.

V. CONCLUSION

Consideration of accuracy and diversity among the mem-
bers of the ensemble is the most important fact for the
success of ensemble based algorithms developed either for



TABLE VIII
COMPARISON AMONG LAYERED BAGGING, YAN [11] AND 10 OTHER
METHODS [28] BASED ON AVERAGE SMAPE, MASE AND MdRAE. NOTE
THAT THE RESULTS ARE AVERAGE OF 111 TIME SERIES DATA OF NN3
COMPETITION AND ‘-’ REPRESENTS DATA ARE NOT AVAILABLE. HERE
THE BEST RESULT IS HIGHLIGHTED USING BOLDFACE TEXT.

ID Method sMAPE MdRAE MASE
- Layered bagging | 14.56 0.55 1.02
B09  Wildi 14.84 0.82 1.13
B07  Theta 14.89 0.88 1.13
C27  Illies 15.18 0.84 1.25
B03  ForecastPro 15.44 0.89 1.17
- Yan 15.80 - -
B16 DES 15.90 0.94 1.17
B17 Comb S-H-D 15.93 0.90 1.21
C03  Flores 16.13 0.93 1.20
C46  Chen 16.55 0.94 1.34
C13  D’yakonov 16.57 0.91 1.26
C50  Kamel 16.92 0.90 1.28

TSF or classification problems. For solving TSF problems,
existing ensemble algorithms (e.g. [1], [9], [10]) consider
only accuracy or diversity but not both. In this paper, we
propose LEA, a layered ensemble architecture, for efficiently
forecasting time series data. Our layered architecture is
consisted of two layers, each of which is an ensemble of
neural networks. Accuracy of the base predictors used for
forecasting is ensured by using the appropriate lag, while
diversity is encouraged by training the predictors using a
different training set. Furthermore, LEA does not combine
all base predictors rather only a subset of predictors that
exhibit high degree of accuracy and diversity.

To evaluate how well LEA performed, extensive exper-
iments have been carried out in this paper on different
TSF problems in comparison with other ensemble and non-
ensemble algorithms. In almost all cases, LEA was found
better compared to popular ensemble algorithm bagging.
These results indicate that irrespective of the type of time
series, LEA can help to improve the forecasting accuracy
of basic ensemble algorithms. When we compare LEA with
other state-of-art statistical and CI methods, our algorithm
was also found better in this case. Current implementation
of LEA uses MLP networks as base predictors; in future
other types of networks such as RBF networks and recurrent
neural networks can be used as base predictors. LEA uses a
fixed ensemble size and a same b value for data re-sampling
irrespective of the type and complexity of time series data.
One of the future improvements to LEA would be to make
it adaptive in terms of its parameters.
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