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ABSTRACT
Online customer reviews are very useful for both helping
consumers make buying decisions on products or services
and providing business intelligence. However, it is a chal-
lenge for people to manually digest all the opinions buried
in large amounts of review data, raising the need for au-
tomatic opinion summarization and analysis. One funda-
mental challenge in automatic opinion summarization and
analysis is to mine implicit features, i.e., recognizing the
features implicitly mentioned (referred to) in a review sen-
tence. Existing approaches require many ad hoc manual
parameter tuning, and are thus hard to optimize or general-
ize; their evaluation has only been done with Chinese review
data. In this paper, we propose a new approach based on
generative feature language models that can mine the im-
plicit features more effectively through unsupervised statis-
tical learning. The parameters are optimized automatically
using an Expectation-Maximization algorithm. We also cre-
ated eight new data sets to facilitate evaluation of this task
in English. Experimental results show that our proposed
approach is very effective for assigning features to sentences
that do not explicitly mention the features, and outperforms
the existing algorithms by a large margin.

1. INTRODUCTION
Online customer reviews are a great resource for both

shoppers and business owners to share feedback about prod-
ucts and services. Shoppers often read them prior to making
purchase decisions, while business owners use them to ob-
tain valuable business intelligence regarding customer satis-
faction. However the sheer volume and primarily unstruc-
tured nature of online reviews hinder users’ ability to obtain
a comprehensive understanding of detailed opinions about
specific features/aspects of a product or service.

To address this problem, researchers have studied approaches
for automatically summarizing/analyzing opinions buried in
the review data [8, 9, 10, 14]. A fundamental requirement
for such approaches is to recognize opinions at the feature
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level. This requires a) identification of key product features,
and b) association of each opinion expressing sentence with
one or more identified features. The first task is relatively
simple, since we can directly extract key product features
from its specification (spec) document which is typically a
structured list of attribute-value pairs provided by the seller
(see Figure 1).

The second task of associating review sentences with prod-
uct features they mention is more challenging. We refer to a
sentence that mentions a product feature as a ‘feature sen-
tence’. Clearly not all review sentences are feature sentences.
Prior work has classified feature sentences as having either
explicit or implicit feature mentions [7, 15, 20]. The differ-
ence between the two is subtle, but can be clarified through
an example.

Consider the following sentence, where the feature ‘size’
is mentioned explicitly in the following sentence.

“I like the size of the phone, it’s really small.”
An explicit feature mention, by definition, can be detected

by simply performing a boolean check on whether the fea-
ture name, or its synonyms, or certain informative keywords
appear in a sentence. For the feature ‘size’ these may include
keywords like ‘size’, ‘dimensions’, ‘length’, ‘width’ etc.

Consequently prior approaches have focused on identify-
ing explicit mentions by extracting such informative key-
words for each feature of interest, and using them for tag-
ging mentions in sentences [11, 13, 15]. This strategy how-
ever does not work for the relatively unexplored problem
of identifying implicit feature mentions in sentences which
contain no informative keywords. For example the follow-
ing sentence also implicitly mentions ‘size’, but one cannot
detect that by boolean checking individual keywords.

“The phone fits nicely into any pocket without falling out.”
Our manually tagged dataset shows that such implicit

mentions cover a substantial portion (∼ 19%) of feature sen-
tences. Their accurate identification therefore is critical to
ensuring high recall of all automated review analysis appli-
cations. Due to its importance, the implicit feature extrac-
tion problem has recently started attracting interest, pre-
dominantly with Chinese review texts [16, 5, 19, 17]. How-
ever, current methods tend to rely on heuristically designed
measures such as correlation counts, association rules etc.
and require significant manual tuning of parameters, mak-
ing them hard to generalize.

In this paper, we propose a new probabilistic method for
identification of implicit feature mentions. Our main idea
is to model the review data with a generative probabilistic
model, representing sentence-feature associations via hidden



Figure 1: Sample product specification of a Laptop

variables. We further assume that a subset of explicit feature
mentions have already been tagged and made available as
training data. These are then used to estimate the model
parameters via an iterative EM-style approach. Eventually,
the inferred values of model parameters and hidden variables
provide the implicit mentions1.

To evaluate the proposed method, we created eight stan-
dardized data sets for English language reviews. Five by ex-
tending existing datasets from Hu et. al. [7] by manually tag-
ging all feature mentions, and three by extending datasets
from [12] through an automated tagging approach (details
in section 5.1). We then compared our proposed approach
with two baseline algorithms based on current state-of-the-
art approaches. Results show that our proposed method
outperforms the baselines by a significant margin in both
extraction accuracy and robustness.

2. RELATED WORKS
Sentiment analysis/opinion mining in online user reviews

has been studied largely in the past decade [3, 7, 11, 14,
18]. Most of the existing researches focus on finding explicit
feature mentions [11, 13, 15]; our work is different from them
because we exclusively focus on the identification of implicit
mentions of features hidden inside the review sentences of
online customer reviews, which can potentially improve all
the opinion analysis and mining applications.

A few attempts have been made to extract implicit fea-
ture mentions from online customer reviews [16, 5, 19, 17].
One limitation is that all these works have used only Chi-
nese review text as the experimental dataset; in this paper,
we construct new English test collections to enable evalu-
ation on English text data. Previous approaches used dif-
ferent heuristics for extraction of implicit feature mentions.
For example, one line of work primarily looks at the corre-
lation between opinion words and feature words and infer
implicit feature mentions based on the occurrence of highly
correlated words. Hai et.al. [5] proposed a two-phase co-
occurrence association rule mining approach to identify im-
plicit feature mentions. Their rules contained opinion words
in the rule antecedent and explicit feature mentions as the
rule consequent. In the first phase of rule generation, a

1In principle our approach could be used to label both un-
known explicit and implicit feature mentions. But in this
work we focus only on detecting implicit mentions, since
approaches for identifying explicit mentions already exist.

set of association rules of the form [opinion-word, explicit-
feature] is generated by looking at the co-occurrence matrix.
In the second phase, consequents (explicit feature mentions)
were clustered to generate more robust rules for each opin-
ion word. One particular limitation of their approach is that
they only considered the associations between feature words
and opinion words, but ignored the associations between fea-
ture words and the rest of the factual/notional words in the
clause. But, factual/notional words often provide important
clue about the implicit feature mentions [17, 19].

To address this limitation, Wei et.al. [17] extended the
works of [5] by considering factual words along with the
opinion words and forming association rules by five differ-
ent collocation extraction algorithms. With similar moti-
vation, Yu et.al proposed a co-occurrence association-based
method [19], where they also try to consider any factual-
word in addition to the opinion words to identify implicit
feature mentions. They tried to exploit co-occurrence count
of factual-word and explicit-feature-mention pairs to imply
the presence of implicit feature mentions. However, the set
of factual words considered in [19] was pre-selected and lim-
ited; also no detail was outlined about how to extract these
factual words. One major limitation of the works [17] and
[19] is that they do not provide any principled way to fil-
ter out the large amount of noisy words present in natural
language texts. They mostly handled this problem by rely-
ing on heuristically tuned parameters and thresholds which
lacks enough theoretical ground to justify the correctness.
There are many decision choices (such as parameters, thresh-
olds) that have to be made in a somewhat arbitrary or empir-
ical manner. These decision choices hardly generalize over
different datasets. The authors of [17] themselves pointed
out this limitation and urged for future research to solve this
problem.

Another line of work exploits the unsupervised learning
technique to extract implicit feature mentions. For example,
Su et.al. developed a mutual reinforcement approach which
clusters product features and opinion words simultaneously
and iteratively by exploiting the hidden sentiment associ-
ation between product feature category and opinion word
group. The learned association was then further used to de-
termine implicit feature mentions [16]. However, one limita-
tion of their approach is that they only considered the opin-
ion words discarding all other notional/factual words similar
to what was done in [5]. On top of that, their algorithm as-
sumes that the set of opinion words is pre-determined and
supplied beforehand. Thus, the success of their approach
largely depends on this pre-supplied restricted opinion word
set and will hardly generalize well over different datasets.

In contrast to all the existing approaches which suffer
from many ad hoc manual tuning or configuration of com-
ponents, our approach exploits statistical modeling and ma-
chine learning to frame the problem as a more principled
optimization problem. As a result, our approach does not
pose any restriction on the set of words (opinion or notional)
we consider and can learn the model parameters automati-
cally without manual or heuristic tuning. Noisy words can
be naturally handled in our approach by introducing a back-
ground model.

3. PROBLEM FORMULATION
Our problem setup assumes that for a given product, we

are provided with a collection of reviews, and it’s associ-



ated features of interest. In addition, review sentences with
explicit feature mentions have already been labeled using a
traditional dictionary lookup based approach. Our goal is to
label all remaining implicit feature mentions in the dataset.

Formally, let R = {r1, r2....rN} be a collection of reviews
of a product or a service, where rj is a review. Let sij
be the ith sentence in the jth review rj ∈ R. Let F =
{f1, f2, f3, ..., fM} be the set of known product features. For
example, for cell phones, fi may be “size” or “battery life”.
Finally Aijk ∈ {1, 0} are binary variables which take a value
1 if sij mentions feature fk (either explicitly or implicitly)
and 0 otherwise.

The general problem of tagging sentences with feature
mentions involves assigning a binary value to all possible
Aijk. Since explicit feature mentions are provided, a subset
of Aijk entries are already known to be 1. The problem of
tagging implicit feature mentions is to fill up all the remain-
ing entries.
Input: Review set R, feature set F , a subset of Aijk

entries already known to be 1
Output: 0 or 1 values assigned to the remaining Aijk

entires.
With our problem formulation, the problem is in nature

similar to traditional multi-label categorization problem, where
each instance (i.e. sentence) can be assigned multiple labels
(i.e. product features). In practice product review sentences
don’t usually mention more than 2− 3 features. Such prob-
lems are normally solved using a supervised machine learn-
ing setup. In our case the available explicit mentions serve
as training data and the implicit mentions serve as test in-
stances. To this end, we use a typical supervised learning
method (Naive Bayes) as one of our baselines. Our precise
approach to identify explicit feature mentions and convert
them into training instances is discussed in the next section.

Our formulation also has similarities to traditional topic
modeling approaches in that we try to probabilistically as-
sign multiple topic labels to each sentence. However in our
setting, topics i.e. product features are fixed and already
known. Traditional topic models such as PLSA [6] or LDA
[1] do not guarantee that their automatically discovered top-
ics will align with our predefined set of product features,
making them unsuitable for the task.

Note that both our problem setup and proposed genera-
tive model are agnostic to whether the known Aijk entries
(training data) provided to the method are in fact explicit
feature mentions. In principle any subset of known men-
tions whether explicit or implicit may be provided, and the
method is expected to fill up the remaining. The partition-
ing of feature mentions as explicit or implicit is a character-
istic of the domain. Since relatively accurate methods for
identifying explicit feature mentions already exist, it is easy
to obtain Aijk entries that correspond to explicit feature
mentions as training data. Implicit feature mentions on the
other hand are harder to obtain, and hence will typically
form the test set.

4. PROPOSED APPROACH
In this section, we describe the proposed approach in de-

tail. Our approach is based on a generative model of review
text, so we will first describe this model, then describe how
to estimate parameters, and finally discuss how to infer the
implicit features using the model.

4.1 A Generative Feature Language Model
The key idea of the proposed approach is to model the

vocabulary occurring in sentences describing some feature
using a unigram language model (called a feature language
model), or a word distribution, denoted by γ1, ..., γk to rep-
resent k features. For example, the unigram language model
for a feature such as “size” may assign high probabilities
to words that we expect to see frequently in sentences dis-
cussing the “size” feature (e.g., “pocket”, “small” etc), while
the model for the feature“customer service” can be expected
to assign small probabilities to a word like “small”, but high
probabilities to other words more associated with “customer
service” such as “call”, “friendly”, or “representative”. Since
each feature has its own feature language model, we will
have as many feature language models as the number of fea-
tures, each modeling the words we expect to see in sentences
discussing the corresponding feature.

Suppose we can estimate an accurate feature language
model for every feature, it would be easy to solve the prob-
lem of extracting implicit features as follows. We can com-
pute the probability of a candidate sentence using each fea-
ture language model, and tag the sentence with features
whose feature language models give the sentence a suffi-
ciently large probability. Essentially, we can treat each fea-
ture as a category and use the Naive Bayes classifier to clas-
sify a sentence into one or more categories.

However, how can we estimate an accurate feature lan-
guage model for every feature? If we had labeled data that
tell us which sentences mention which (implicit) feature, we
would have been able to estimate the corresponding feature
language model easily based on the observed word frequen-
cies in the sentences mentioning the same implicit feature.
Unfortunately, we do not assume that we have such training
data which require manual labor to create.

To solve this problem, we can fit a mixture model with
these feature language models as components to all the re-
view text data we have and learn these feature language
models in an unsupervised way similar to how probabilistic
topic models such as PLSA [6] or LDA [1] can be used to
learn the latent topics from text data. The basic idea here
is to search for a specific set of concrete feature language
models that can give the observed review data the maxi-
mum probability, or use the Maximum Likelihood estimator
to estimate all the parameters that specify the probabilities
in each feature language model.

However, if we are to use PLSA or LDA directly to model
our review data, we would not be able to ensure that a
learned topic corresponds to a feature. To solve this prob-
lem, we pre-specify the word distributions in the mixture
model by estimating them based on sentences explicitly men-
tioning phrases describing a feature so that each would corre-
spond to a feature; as a result, our mixture model would only
have the mixing weights as parameters to be estimated, and
once these parameters are estimated, they can be directly
used to assign features to a sentence.

To model the noisy words in the review sentences, we also
introduce a special language model called background lan-
guage model γB , which can be estimated based on the entire
collection of review data so that it would assign high prob-
abilities to frequent words like “the”, “a”, and “we” and thus
help explain/attract such noisy words when used in a mix-
ture model together with feature language models.

Our overall idea is thus to assume that our review data



are generated using a generative mixture model with feature
language models as components (which we would refer to
as a Generative Feature Language Model (GFLM))
according to the following process as illustrated in Figure 2:

1. Each sentence is generated by generating each of the
words in the sentence independently.

2. To generate a word w in sentence S, we first decide
whether we would generate the word using the back-
ground model γB or a feature language model γi. We
make this choice according to λB ∈ [0, 1], which is a
parameter indicating the probability of using the back-
ground model instead of a feature language model.
Thus the probability of choosing a feature language
model would be 1− λB .

3. If we have chosen the background language model, we
would sample the word from the distribution p(w|γB);
otherwise, we would further make a decision on which
of the k feature language models to use, and this deci-
sion is made based on another set of parameters {πS,i},
where i = 1, ..., k, and

∑k
i=1 πi = 1. πS,i is the prob-

ability of choosing feature language model γi to gen-
erate the word. Thus with probability πS,i, we would
sample the word using p(w|γi).

4. This process would be repeated to generate all the
words in a sentence, and all the sentences would be
generated in the same way, each sentence being gen-
erated using a set of sentence-specific topic choice pa-
rameters πS,i.

The design of such a generative model is based on two
reasonable assumptions: First, each sentence may contain
words drawn from multiple feature language models; this is
reasonable since a sentence may mention multiple features.
Second, each sentence has its own feature choice parameters
(π); this not only reflects the real situation (i.e., different
sentences tend to mention different features), but also allows
us to infer the features implicitly mentioned in the sentence
based on its feature choice parameter values. Specifically,
πS,i indicates to what extent sentence S can be explained by
the feature language model γi, thus it would be reasonable
to assume that if we are to assign a feature to sentence S, we
should choose the feature that has the maximum πS,i. In our
experiments, we used a threshold θ to determine whether we
should assign a feature to a sentence and assign all features
whose π parameter values are above θ.

According to our generative model, the probability of ob-
serving a word w in a review sentence S is:

PS(w) = λBP (w|γB) + (1− λB)

k∑
i=1

πS,iP (w|γi). (1)

The log-likelihood of observing the entire set of reviews R
from a mixture model with unknown parameters Λ is thus:

logP (R|Λ) =
∑
S∈R

∑
w∈V

[c(w, S)× log{λBP (w|γB) (2)

+(1− λB)
k∑

i=1

(πS,iP (w|γi))}]

where V is the set of words in our vocabulary, c(w, S) is
the number of times word w appears in sentence S, and
the parameter set Λ is defined as Λ = {πS,i|S ∈ R, 1 ≤

Figure 2: Schematic diagram of the generative model for a
hypothetical “Cell Phone” Dataset

i ≤ k}. Note that we assume that all the parameters of
the component language models, i.e., γ1, ..., γk, and γB ,
are known because they would be estimated by using the
pseudo training data obtained by finding sentences explicitly
mentioning keywords describing features as we will discuss
below.

We can then estimate the parameters Λ using the Max-
imum Likelihood estimator which finds a setting of Λ that
maximizes the log-likelihood:

Λ̂ = arg max
Λ

logP (R|Λ) (3)

This optimization problem can be solved by using an Expectation-
Maximization (EM) algorithm which will be described in the
next section.

4.2 Parameter Estimation:
Equation 1 reveals that our generative model incorporate

four different parameters, i.e., P (w|γB), P (w|γi), λB and
πS,i. We outline there estimation process in the following
paragraphs sequentially.

First, all the unigram language models, including the back-
ground model γB and the feature language models γi, would
be estimated based on pseudo training data and kept as con-
stants when computing the maximum likelihood estimate
using Equation 3. This is, in effect, to impose an infinitely
strong prior on these parameters of the generative model
from the perspective of Bayesian estimation.
P (w|γB): This is estimated using the whole collection

R as p(w|γB) =
∑

S∈R c(w,S)∑
w′∈V

∑
S∈R c(w′,S)

. Note that, p(w|γB) is

constant throughout the learning process and doesn’t change
during the later estimation procedure.
P (w|γi): As mentioned in section 3, we assume that we

already know the set F of product features we are inter-
ested in. Thus, we can automatically tag each sentence in
the review corpus with the explicitly mentioned features in
that sentence to generate some “labeled data”, which can
be used to estimate the feature topic models, i.e., P (w|γi).
Specifically, P (w|γi) is estimated as follows.

1. For each feature fi ∈ F and each word w ∈ V , we
count the number of times fi and w occur explicitly in
the same sentence. Let this count be C(fi, w).



2. For each word w ∈ V , we count the number of review
sentences where word w appears at least once. Let this
count be C(w).

3. For each feature fi ∈ F and each word w ∈ V , we com-
pute their TF-IDF weight by the following formula:

TFIDF (fi, w) = log{1 +C(fi, w)}× log

{
1 +

N

C(w)

}
(4)

N is the total # of sentences in the review corpus.

4. Finally, we compute the feature language models by
normalizing the TFIDF weights as shown in the fol-
lowing formula:

P (w|γi) =
TFIDF (fi, w) + 1∑

w′∈V TFIDF (fi, w′) + |V | (5)

Note that, we used Laplacian smoothing to avoid zero
counts for unseen words in the review corpus.

The rationale for this estimation method is to give words
that have strong associations with a feature fi higher prob-
abilities. The use of TFIDF weighting is to penalize those
common words which may occur frequently in all the sen-
tences for all the features.
λB encodes our belief about the level of noise in the review

data and can thus be set to any reasonable value reflecting
the percentage of words to be treated as noise instead of
requiring cross-validation to empirically tune the parameter.
In our experiments, we set λB = 0.6 which means that we
assume, on average, 60% of the words can be treated as
noise; this setting is intuitively reasonable for our problem
setup and has worked well empirically.

The parameters to be estimated now are Λ = {πS,i|S ∈
C, 1 ≤ i ≤ k}, which can be estimated using the Expectation
Maximization (EM) algorithm [2] based on Equation 3. The
EM algorithm is a general algorithm for maximum-likelihood
estimation where the data are incomplete (implicit features)
or the likelihood function involves latent variables (z). Infor-
mally, the EM algorithm starts with randomly assigning val-
ues to all the parameters to be estimated, i.e., Λ. It then iter-
atively alternates between two steps, called the expectation
step (i.e., the E-step) and the maximization step (i.e., the M-
step), respectively. In the E-step, it computes the expected
likelihood for the complete data (the so-called Q-function)
where the expectation is taken w.r.t. the computed condi-
tional distribution of the latent variables (i.e., the hidden
variables) given the current settings of parameters and our
observed (review text) data. In the M-step, it re-estimates
all the parameters by maximizing the Q-function. Once we
have a new generation of parameter values, we can repeat
the E-step and another M-step. This process continues until
the likelihood converges, i.e., reaching a local maxima.

We can use the following iterative updating formulas to
estimate all the parameters. Intuitively, if we know the iden-
tity of each word in the collection, i.e., which feature topic
(or background) model generated a particular word, then it
is quite easy to estimate Λ. We thus introduce a hidden vari-
able for the identity of each word, {zS,w}. P (zS,w = f) indi-
cates the probability that word w in sentence S is generated
from feature topic γf given that w is not generated from the
background model γB . Note that,

∑
f ′∈F P (zS,w = f ′) = 1.

P (zS,w = B) is the probability that word w in sentence S

is generated from the background model . Here we changed
the notation to use variable f , instead of i which we used
before, as the feature index variable to make it easier to
interpret the EM algorithm equations.

We can write down the E-step and M-step as follows:
E-Step:

P (zS,w = f) =
π

(n)
S,fP (w|γf )∑k

f ′=1 π
(n)

S,f ′P (w|γf ′)
(6)

P (zS,w = B) =
λBP (w|γB)

λBP (w|γB) + (1− λB)
∑k

f ′=1 π
(n)

S,f ′P (w|γf ′)
(7)

M-Step:

π
(n+1)
S,f =

∑
w∈V c(w, S)(1− P (zS,w = B))P (zS,w = f)∑k

f ′=1

∑
w∈V c(w, S)(1− P (zS,w = B))P (zS,w = f ′)

(8)
In E-Step, we are actually estimating the distribution of

the hidden variables, (or estimating the identity of each
word). This distribution is simply computed by the like-
lihood of a word, how much proportion is contributed by
the background model, or by feature topic f if not con-
tributed by the background. Thus, each word is assumed to
be divided into fractions and the fractions are assumed to
be generated from different feature topics.

M-step is essentially aggregating such fractions to esti-
mate a new set of values for Λ. To estimate the new πS,f

(the mixing weights for a sentence), we just aggregate all the
fractions of words generated by feature topic f in sentence
S, and normalize {πS;f}f=1...k to make

∑
f ′=1...k{πS;f ′} = 1

(Equation 8).
Before convergence, each iteration of the EM algorithm

will yield a larger likelihood value in Equation 2. The al-
gorithm will terminate when it achieves a local maximum
of the log likelihood. In our experiments, we used multiple
trials with random initializations to improve the local max-
imum we obtain, where in each trial we begin with a new
starting point of Λ (by assigning random values to Λ).

To give an intuitive example of how the EM framework ac-
tually works, lets consider the generation of a word “pocket”
in the hypothetical “Cell Phone” dataset with reference to
Figure 2. Given the current parameter values, the E-Step
essentially computes what is the probability that the back-
ground model generated word “pocket” and if not generated
by the background model, what fraction of it is generated
from which feature topics, e.g., “size”, “sound”, “screen” etc.
For word “pocket”, the fraction for feature “size” is likely to
be high as P (“pocket”|“size”) is likely to be higher com-
pared to P (“pocket”|“sound”) or P (“pocket”|“screen”).

To illustrate how M-step works, let us consider the follow-
ing review sentence which talks about the feature “screen”
implicitly:

“There were scratches on the display. Its very annoying.”
M-step here re-estimates the proportion of different fea-

ture topics, e.g., “size”, “sound”, “screen” etc., in the gen-
eration of this sentence. To give an intuitive hypothetical
simulation, for the words “scratches” and “display”, the frac-
tion for feature “screen” is most likely to be larger than the
features “size” and “sound”. For the rest of the words, the
distribution of the three features is likely to be somewhat
uniform as these are mostly background words. Thus, gath-
ering these fractions and aggregating them would cause fea-
ture “screen” to achieve a higher proportion than the other
two features in the generation process of the sentence.



4.3 Implicit Feature Prediction:
After the EM algorithm converged, we know the identi-

ties of each word P (zS,w = f) and P (zS,w = B), i.e., the
degree to which the background model or some feature topic
model contributed to the generation of a particular word.
We also know the feature topic distributions πS,f , i.e., to
what proportion, a particular sentence S is generated from
some feature topic f .

Based on these quantities, we can infer the implicit fea-
ture mentions within various sentences in two different ways,
which would be called GFLM-Word and GFLM-Sentence,
respectively.

In case of “GFLM-Word”, given a sentence S, it looks at
each word w and adds a feature f to the inferred implicit
feature list X(S) if and only p(zS,w = f) × (1 − p(zS,w =
B)) is greater than some threshold θ for at least one word
in S. The philosophy behind this formula is that if any
particular word w has a small probability of being generated
by a background model but has higher probability of being
generated from some feature topic model γf , then word w
is likely referring to feature f implicitly. Here, the decision
is made solely by looking at individual words, not the entire
sentence.

In case of “GFLM-Sentence”, given a sentence S, it looks
at the contribution of each feature f in the generation of the
sentence, i.e.,πS,f and infers f∗ as an implicit feature only
if πS,f∗ is greater than some threshold θ. Here, the decision
is made at the sentence level, not at individual word level,
thus may be more robust which is indeed confirmed in our
experiments.

5. EXPERIMENT DESIGN

5.1 Dataset
To the best of our knowledge, no standardized English lan-

guage datasets exist for evaluating methods that mine im-
plicit feature mentions from online product reviews. To solve
this problem, we created eight new data sets which will be
made available for researchers to use, including both human
annotated data sets and automatically annotated datasets
using a computational method.

5.1.1 Human Annotated Dataset
Our gold standard consists of assignments of features to

sentences. To leverage existing resources to create such a
data set, we used the review data made available by [7] as
our starting point. The collection contained five different
datasets associated with five different electronic products.
In total, there were 314 reviews containing 4259 sentences.
Each sentence was tagged with the features that were ex-
plicitly present in that particular sentence. These explicit
feature mentions were tagged by the authors of [7]. See Ta-
ble 1 for more details.

This data set already has review sentences and features
extracted, but it does not have a comprehensive tagging of
implicit feature mentions, which we need for our evaluation.
Our main task is thus to create such tags of implicit feature
mentions (i.e., tag a sentence with features that are implic-
itly/indirectly mentioned in the sentence). We recruited two
(non-author) volunteers to perform this task. Each volun-
teer was provided with the list of product features and asked
to review all 4259 sentences. For each sentence they were
requested to specify all product features that were being

referenced implicitly in the sentence. The tagging results of
the two annotators were merged based on unanimous voting
so that only the features assigned by both volunteers would
be used as the final tags; tags with disagreements were dis-
carded. Detailed information about tags for each product is
provided in Table 1. We obtained 687 total tags from volun-
teer one and 703 tags from volunteer two. Out of these, the
two agreed on 649 tags spanning a total of 569 sentences.
When a sentence explicitly mentions a feature, the feature
is automatically assigned to the sentence, so the human an-
notators did not tag any explicit feature mentions, rather
they focused on assigning implicit feature mentions.

Ideally, we would like our data set to be as large as possi-
ble, but the size of our data set was inevitably limited by the
manual effort involved in tagging. Nevertheless as we show
in section 6, our data set is sufficiently large to allow us to
observe statistically significant improvements over baselines.

5.1.2 Automatically Annotated Datasets
In order to construct larger data sets without incurring

too much manual work, we used an automated tagging ap-
proach. We created three new data-sets through this auto-
mated technique. The idea is to delete an explicitly men-
tioned feature from a sentence and see if our algorithm can
“recover” it.

Specifically, we collected a comparatively larger set of
4, 699 reviews containing 38, 056 sentences from the dataset
provided by [12]. The reviews were associated with three
different products in the “Electronics” genre. We also ob-
tained the relevant lists of product features from the ama-
zon product specification web-page, i.e., for each particular
product, we searched it on amazon to find the product spec-
ification page and collected the list of features mentioned
there. We also ignored features with low frequency of oc-
currence, specifically, only the features that are mentioned
in at least 30 sentences are used for the simulation evalua-
tion.

For each feature, we randomly selected ∼ 40% of its ex-
plicit mentions and deleted them from their respective sen-
tences, thus artificially creating sentences that do not men-
tion the feature explicitly, but are known to refer to the
feature. We can then assume the deleted feature should be
assigned to such an artificially created sentence from which
the corresponding feature-phrase has been deleted.

For example, we can remove “battery” from the following
sentence

“The battery holds charge for the whole day, you don’t need
to carry a charger with you.”.

to obtain
“The holds charge for the whole day, you don’t need to

carry a charger with you.”.
and will assume that this ungrammatical sentence should

be assigned the feature “battery”. Since our approach is
based on bag of words representation, the fact that the new
sentence is no longer grammatical is not a concern. See
Table 2 for specific statistics about these datasets.

5.2 Baseline Approaches
The main research questions we want to answer in our ex-

periments are: 1) How effective are our proposed methods
for exploiting the unlabeled data, which is the main moti-
vation of the proposed new methods? 2) How are the pro-
posed new methods compared with the current state of the



Table 1: Dataset Description of five datasets extended from the work [7] and annotated by humans.

Dataset Total no of Total no of No of Explicit Sentences with at least Total no of occurrences
reviews sentences features one implicit feature of Implicit Features

Cellular phone1 41 587 67 80 91
DVD player 99 839 49 129 141
Mp3 player1 95 1811 57 226 271
Digital camera1 45 642 96 74 80
Digital camera2 34 380 79 60 66

Total 314 4259 348 569 649

Table 2: Dataset Description of three new large datasets created from raw data in [12] and annotated automatically.

Dataset Total Total No of Total Explicit Implicit features percentage Sentences with
no of no of Explicit features feature (Deleted explicit of deletion at least one

reviews sentences selected occurrence occurrence) implicit feature

Cellular phone2 966 9,856 14 2,825 1,123 39.75% 1057
Mp3 player2 1495 10,347 10 1,596 633 39.66% 607
Router 2238 17,853 10 3,193 1,275 39.93% 1214

Total 4,699 38,056 34 7,614 3,031 39.78% 2878

art method? To answer the first question, we compare our
methods with a baseline method representing a representa-
tive supervised learning method (i.e., a naive bayes classi-
fier), which is known to perform well for many text classifica-
tion tasks. To answer the second question, we compare our
methods with another baseline method representing the cur-
rent state of the art, i.e., the approach of correlation counts
between feature words and opinion/factual words proposed
in [19] for Chinese review data.

5.2.1 Naive Bayes Classifier Based Ranking
This approach uses all the sentences explicitly mentioning

a feature as the (positive) training examples for the corre-
sponding feature so that we can train a classifier to use the
words in such sentences as clues to classify additional sen-
tences that may not mention the features explicitly into one
or more of these features. Specifically, the ranking function
takes the words in a review sentence S as its input and gen-
erates a score for each of the candidate implicit feature f ′

which indicates how much likely it is that f ′ has actually
been mentioned implicitly. The score is computed based on
the following formula:

score(f ′|S) = P (w1|f ′)× P (w2|f ′)× ....× P (wn|f ′)× P (f ′)

= P (f ′)×Πn
i=1P (wi|f ′)

Here, S = {w1, w2, ...., wn}. Some threshold θ is chosen
such that, for a candidate feature f ′, if score(f ′|S) > θ, f ′

would be assigned to sentence S.

5.2.2 Correlation Based Ranking
Given the same setup discussed in Section 5.2.1, the rank-

ing function here is a sum of correlation measurements be-
tween context words (wi’s) and candidate feature (f ′) as
shown in the following Equation:

score(f ′|S) =

∑n
i=1

M(f ′,wi)
count(wi)

n

Here, M(f ′, wi) is the number of times both f ′ and wi

appear together in a sentence and count(wi) is the number
of times word wi is mentioned in the entire corpus. Finally,
some threshold θ is chosen such that, for a candidate feature
f ′, if score(f ′|S) > θ, f ′ would be assigned to sentence S.

5.3 Performance Measures
To measure the performance of the proposed approach,

we use three popular measures available in the literature:
Precision, Recall and the F1 measure [4]. Following is how
these measures were computed: For each review sentence,
the implicit features assigned by our approach (controlled
by the thresholding parameter) were compared against the
list of “gold” implicit features to compute the true positive,
false positive and false negative statistics for that sentence.
Note that, explicit features mentions were not considered in
any way during the computation of these statistics. Then,
all such statistics for all the sentences in a dataset were ag-
gregated and used to compute the final Precision, Recall
and F1 measure. For each dataset, we ran “GFLM-Word”
and “GFLM-Sentence” five times, each time with a different
random initialization of the parameter values for the gener-
ative model. All the results reported for “GFLM-Word” and
“GFLM-Sentence” are calculated by averaging the results
obtained for these five different runs.

6. EXPERIMENT RESULTS
This section presents the results on the five human-annotated

datasets and the three larger automatically-annotated datasets.
For clarity and conciseness, we use “NB” as an abbrevia-
tion for the Naive Bayes classifier baseline method, “CR” for
the Correlation-based baseline method, “FM-W” for GFLM-
Word, and “FM-S” for GFLM-Sentence.

6.1 Comparison with baselines
We first compare our two proposed approaches, GFLM-

Word and GFLM-Sentence, with the baseline algorithms
mentioned in section 5.2. Table 3 presents a summary of the
results on different datasets. The thresholding parameter θ
for each algorithm was varied between [0, 1] with an incre-
ment of 0.05. Table 3 reports the maximum F1 obtained by
each algorithm for some particular value of θ and also reports
the precision and recall corresponding to the maximum F1.
For example, in case of Cellular Phone 1 dataset, NB (naive
bayes) achieved maximum F1 of 0.2446 with corresponding
Precision and Recall of 0.1818 and 0.3736 respectively, while
FM-S (GFLM-Sentence) obtained 0.4853, 0.6169 and 0.4 for
F1, Precision and Recall respectively.

Table 3 shows that our proposed approach outperforms



Table 3: Performance Comparison of GFLM with Baseline Approaches. Gains were found to be statistically significant via
t-test at p-value < 0.0001 (†) and < 0.02 (‡)

F1 Corresponding Precision Corresponding Recall
Dataset NB CR FM-W FM-S NB CR FM-W FM-S NB CR FM-W FM-S

Cellular phone1 0.2446 0.3092 0.4840† 0.4853† 0.1818 0.2206 0.5487 0.6169 0.3736 0.5164 0.4329 0.4

DVD player 0.3147 0.3420 0.5125† 0.5106† 0.2157 0.2268 0.6543 0.5559 0.581 0.6950 0.4212 0.4723

Mp3 player1 0.2947 0.2671 0.5570† 0.5612† 0.2406 0.2390 0.6397 0.6383 0.3800 0.3025 0.4933 0.5007

Digital camera1 0.3312 0.3380 0.3831‡ 0.3808‡ 0.3253 0.3870 0.5705 0.5504 0.3375 0.3 0.2886 0.2911

Digital camera2 0.2177 0.2555 0.4439† 0.4559† 0.1483 0.1619 0.5940 0.5303 0.4090 0.6060 0.3545 0.4

Cellular phone2 0.4051 0.4134 0.597† 0.5805† 0.3775 0.4156 0.6791 0.5795 0.4371 0.4112 0.5325 0.5816

Mp3 player2 0.4604 0.4634 0.6666† 0.6480† 0.4477 0.6495 0.6574 0.6195 0.4739 0.3601 0.6761 0.6793

Router 0.4805 0.5291 0.6686† 0.6439† 0.4213 0.8009 0.7487 0.6339 0.5593 0.3951 0.6040 0.6543

(a) Precision (b) Recall (c) F1 Measure

Figure 3: Performance Comparisons for Cell Phone 1 dataset; the results on other data sets are very similar. The x-axis
represents the thresholding parameter θ and y-axis plots the corresponding performance measure.

the baseline approaches in terms of F1 by a large margin.
Close observation also reveals that GFLM-Word and GFLM-
Sentence perform significantly better than the baseline ap-
proaches in terms of Precision, which is a desired property
we expect for opinion summarization. However, in some
cases, the Recall value corresponding to the maximum F1
for baseline approaches were found to be larger than the
same for GFLM-Word and GFLM-Sentence. One should
note that this higher recall has little practical value as the
corresponding precision is very low. On the other hand,
GFLM-Word and GFLM-Sentence achieved comparatively
very high precision while preserving reasonable recall.

The precision-recall trade-off is better demonstrated via
Figure 3. Here, we show how Precision, Recall and F1 vary
with respect to the thresholding parameter for different com-
pared approaches in case of“Cell phone 1”dataset. The plots
on other data sets are very similar (which are not shown
due to the space limit). In these figures, the thresholding
parameter (we define it as θ) is represented along the x-
axis, while the y-axis represents the performance measure,
i.e., precision, recall or F1. Note that θ is varied between
0 to 1, which is appropriate for a probability cutoff. The
score returned by GFLM-Word and GFLM-Sentence for a
candidate feature f is naturally a probability. However, the
output from naive bayes based and correlation based ap-
proaches are not necessarily probabilities, thus to apply the
threshold, we normalized the output scores of the baseline
approaches to make them fall into the range of 0 to 1.

From Figure (3a - 3c), we see that both GFLM-Word and
GFLM-Sentence outperform the naive bayes and correlation
baselines approaches by a significant margin in all measures,
Precision, Recall, and F1. Another important observation
is that both GFLM-Word and GFLM-Sentence attain this
high performance for a wide range of θ variation. This is true
for all the three measures. This suggests that our proposed
approach is less sensitive to the variation of the thresholding

parameter compared with the baseline approaches, and thus,
is more robust.

Analysis: To better understand whether the reason why
our approach outperforms baseline approaches is indeed due
to its ability to learn from unlabeled sentences and its more
principled way to remove noisy words from review sentences
compared to the simple heuristic approaches, we provide a
detailed analysis of the behaviors of these algorithms. Let
us consider one example sentence from the “Cell Phone 1”
dataset which talks about the feature “customer service”:

“i returned to the store , whereupon the clerk insisted that
he could make it work ; he could n’t”.

This is not a straightforward sentence that talks about a
particular feature directly, therefore predicting the implicit
feature“customer service” is non-trivial. In our experiments,
the GFLM methods could infer the feature “customer ser-
vice” correctly with a high probability, i.e., 0.85, while the
baseline approaches could not do the same. Here is an in-
tuitive explanation for that: First, The background model
of GFLM filtered out all words except the two words “clerk”
and “returned”. For words “clerk” and “returned”, the prob-
abilities of being generated by the background model was
found to be pretty small (less than 0.23). Whereas, the
same probability was pretty high for the remaining words
in the sentence. Next, words “clerk” and “returned” were
found to be more likely generated by the feature “customer
service” than any other features as suggested by the fea-
ture topic models. Thus, GFLM successfully inferred “cus-
tomer service” as an implicit feature. On the other hand,
The NB (Naive Bayes based) and CR (Correlation based)
approaches inferred features “phone” (probability 0.61) and
“sound” (probability 0.15) respectively. Note that, feature
“phone” captures users comments about the overall product.
It’s interesting to see that both NB (Naive Bayes based) and
CR (Correlation based) approaches fails to capture the ac-
tual implicit feature. This signifies that the noisy words ap-



(a) Mp3 Player 1: Feature-wise F1 (b) DVD Player: Feature-wise F1

Figure 4: Feature-wise performance of compared algorithms. The x-axis represents the top ten frequent features with explicit
mentions sorted by their frequency from left to right, y-axis plots the corresponding F1 per feature.

pearing in the sentence drove these approaches into wrong
prediction. It’s also notable that NB inferred the feature
(“phone”) which is highly frequent compared to feature “cus-
tomer service”. Thus, the high prior probability of feature
“phone” would have likely driven the decision for NB ap-
proach.

6.2 GFLM-Sentence vs. GFLM-Word
Next, we compare GFLM-Sentence and GFLM-Word. The

results in Table 3 show that overall the two approaches are
comparable in F1 on the manually tagged test sets, but
GFLM-Word has consistently higher F1 on the three auto-
matically tagged data sets. When examining their precision
and recall, we note that GFLM-Sentence tends to be better
in Recall, while GFLM-Word is often better in Precision.
This suggests that a single correlated “signal word” with a
feature can be very accurate in predicting an implicit fea-
ture, but there are also implicit features that may not have
“obvious” strong signal words, and to predict such a feature,
we will need to look at the overall evidence in a sentence as
GFLM-Sentence does.

We further compare their sensitivity to the variation of
the thresholding parameter and find that GFLM-Sentence
seemed to be less sensitive than GFLM-Word as signified by
the apparently larger“area under curve”attained by GFLM-
Sentence for different datasets shown in Figure 3 [Similar
results were obtained for other datasets too]. However, both
NB (naive bayes) and CR (Correlation) based methods were
found to be severely sensitive to the thresholding parameter
variation. A slight change in the thresholding parameter
resulted in big changes in the performance measures for both
NB (naive bayes) and CR (Correlation).

6.3 Feature Level Analysis
Next, we tried to see the behavior of the algorithms at the

feature level in more detail. Figure 4a-4b show these analy-
ses in summary. Here, we plot the top ten frequent features
(explicit mentions) along the x-axis sorted by their frequency
from left to right in descending order and the y-axis plots
the F1 of the corresponding feature obtained by different al-
gorithms being compared. For space constraints, we picked
two datasets to show, i.e., “Mp3 Player 1”and“DVD Player”.
However, we obtained similar results for other datasets too.

Close observation of figure 4a-4b reveals that both GFLM-
Word and GFLM-Sentence perform superior compared to
the baseline approaches at the feature level too for almost
all the features. For example, in case of features “price” and
“storage” of the dataset “Mp3 Player 1”, both GFLM-Word
and GFLM-Sentence achieved a high value ([0.45−0.53]) for
F1, while the corresponding F1 for the baseline approaches
were significantly poor ([0.0− 0.25]).

To dig more into the feature level analysis, we next tried
to look at which words played the most important role for
inferring different implicit features, i.e., the “signal words”.
For this analysis, we considered only the GFLM-Word ap-
proach. As discussed in section 4.3, when P (zS,w = f) ×
(1 − P (zS,w = B)) > θf for some feature f and word w,
GFLM-Word inferred f as an implicit feature and w is the
word which contributed in making the inference. First we set
θf to 0.6 and ran GFLM-Word on different datasets. Then
we tried to find out < f,w > pairs for which P (zS,w =
f)× (1− P (zS,w = B)) > θf holds true. Next, for each fea-
ture f , we found out the top three words with the highest
value for P (zS,w = f) × (1 − P (zS,w = B)). This result is
shown in Table 4. Here, we show the results for the human
and automatically annotated datasets by combining similar
product types. For example, the top three words which re-
sulted in inferring “sound” as an implicit feature for “Cell
Phone” dataset were found to be “quiet”,“loud” and “ear-
piece”. This makes perfect sense as any human would also
suggest the feature “sound” based on similar context words.
Lets consider another example of feature “streaming” in case
of “Router” data. Here, the top three words we found are
“Netflix”, “video” and “HD”. These examples justify that
the inference that our approach makes is based on sensi-
ble choices which mimic human intelligence to some extent,
suggesting that the proposed generative model is quite ef-
fective to mine the review text to pick up the “right” signals
for distinguishing and predicting implicit feature mentions.
Note that our approach does not need any manual effort or
tuning of parameters except for the threshold θ, to which
the algorithms are not very sensitive as we discussed earlier.
Thus it is reasonable to assume that our approach would be
effective for mining implicit features in reviews of other nat-
ural languages, an important direction that we will pursue
in the future.



Table 4: Identity association between feature words and
other words

Dataset Feature word 1 word 2 word 3

sound quiet loud earpiece
Cellular phone size small pocket fit
(1 & 2) battery charge life long

internet wap hotspot end
button back press push
design robust sleek weight
camera image flash picture

software install update xp
Mp3 player button cracked press pause
(1 & 2) storage disk huge space

warranty date replacement repair
transfer kbps usb load
battery recharge charge plug

use access highly fun
Digital camera price worth cheaply point
(1 & 2) design flaw plastic superb

battery continue solid nice
software raw os consistently
memory fit reader large

software XP proxy program
Router streaming Netflix video HD

installation physically error manual
price worth refund Amazon
port usb SharePort Compatible
speed high HD mbps

format avi file able
DVD player sound optical cd vcd

service answer busy response
price worth dollar guess
screen light silver load
quality build pretty begin

7. CONCLUSION AND FUTURE WORK
Mining implicit feature mentions from review data is an

important task required in any applications involving sum-
marizing and analyzing review data; without an automated
method for recognizing the implicit mentions of features in
many review sentences would make it impossible to under-
stand such opinions in detail at the feature level. We pro-
posed a novel generative feature language model to solve
this problem in a general and unsupervised way. In contrast
with the previous heuristic approaches which require much
ad hoc manual work in tuning parameters, our new approach
is grounded in statistical learning and optimizes the parame-
ters automatically through an EM algorithm. Our approach
also elegantly solves the problem of filtering noisy words by
using a background language model.

Another contribution of our work is the creation of eight
new English datasets, including five manually annotated
data sets and three automatically annotated large data sets,
which will facilitate future research on the problem.

Evaluation on these data sets show that the proposed ap-
proach is very effective and outperforms both a state-of-the-
art baseline and a straightforward adaptation of a standard
supervised learning approach by a large margin. The new
approach is also more robust with just one parameter to set,
to which our algorithm is not very sensitive (setting it to a
value of 0.5 would work well on all the data sets).

Although we evaluated the proposed method using En-
glish reviews, the approach is general and can thus be ex-
pected to work well on other natural languages as well. Fur-
ther evaluation of our method using reviews in other natural
languages would be an interesting future direction. Another
direction is to study the impact of the implicit feature min-
ing on applications (e.g., to see how opinion summaries may
be improved through incorporating mined implicit features).
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