
JIM: Joint Influence Modeling for Collective Search Behavior
Shubhra Kanti Karmaker Santu

University of Illinois Urbana-Champaign (UIUC)

karmake2@illinois.edu

Liangda Li

Yahoo Research

liangda@oath.com

Yi Chang

Jilin University, Changchun, China

Ministry of Education, China

yichang@acm.org

ChengXiang Zhai

University of Illinois Urbana-Champaign (UIUC)

czhai@illinois.edu

ABSTRACT
Previous work has shown that popular trending events are im-

portant external factors which pose significant influence on user

search behavior and also provided a way to computationally model

this influence. However, their problem formulation was based on

the strong assumption that each event poses its influence inde-

pendently. This assumption is unrealistic as there are many corre-

lated events in the real world which influence each other and thus,

would pose a joint influence on the user search behavior rather

than posing influence independently. In this paper, we study this

novel problem of Modeling the Joint Influences posed by multiple

correlated events on user search behavior. We propose a Joint In-
fluence Model based on the Multivariate Hawkes Process which

captures the inter-dependency among multiple events in terms

of their influence upon user search behavior. We evaluate the

proposed Joint Influence Model using two months query-log data

from https://search.yahoo.com/. Experimental results show that

the model can indeed capture the temporal dynamics of the joint

influence over time and also achieves superior performance over

different baseline methods when applied to solve various interest-

ing prediction problems as well as real-word application scenarios,

e.g., query auto-completion.
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1 INTRODUCTION
Search Engine optimization has been a vastly studied research area

in the past decade. One key component of search engine optimiza-

tion is analyzing the user search behavior in order to better under-

stand their information need. User search behavior has been studied

from multiple perspectives, e.g., user’s own browsing history, click

log analysis etc. Recently, how various external factors influence

the user search behavior has attracted increasing attention [20].

One important type of external factor is the external events that

“significantly” attract the general mass. They trigger user’s thirst for

information related to the event and thus, pose influence on how

the users search to fulfill their information need. How to model the

influence of such external events on user search behavior is the

high level research question we study in this paper.

Figure 1: A toy example with three events e1, e2, e3. The cir-
cles, squares and dices represent queries generated by the
influence of event e1, e2 and e3 respectively.
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The problem of modeling the influence of popular trending

events on user search behavior is not entirely new, specifically,

this problem was introduced by Karmaker et.al. [20]. However, the

problem definition provided in [20] was based on the strong as-

sumption that the influence posed by each event is independent

of the other events, which clearly limits the applicability of such

solution to cases where there are multiple correlated events and

these events pose a joint influence on individual user’s search pat-

tern. To clearly motivate the problem, let us start with the example

in Figure 1, where we show three popular events from the month

of April, 2016. The first event (denoted by e1) is Donald Trump’s

win in the Indiana Primaries. The blue line below the event descrip-

tion represents the time dimension and the “yellow” dots represent

queries related to/triggered by the event e1. For example, the query

“Trump Indiana result" is clearly seeking information about Trump’s

election results for Indiana Primaries. Note that, the same query

can be posed by multiple users at different instants of time. Here,

e1 is an influential event that has triggered a lot of user queries

related to that event. We call these triggered queries as Influenced
queries. Similarly, event e2, i.e., “Panama Papers Leaked” and event

e3, i.e., “Hillary Clinton mocks Donald Trump over not releasing

tax returns” also trigger numerous queries from users asking for

relevant information about the respective event. A deeper thought

would also reveal that some of these events may be correlated

and they may have a joint-influence on the generation of some

queries. For example, people searching for “Hillary Clintons mock-

ing about Donald Trump" might also be interested in information

about Trump’s Indiana Primary Results and vice-versa. Thus, mu-

tual influence exist among events that jointly affect user search

behavior and this joint influence also evolves over time causing

corresponding change in the user search pattern. In this paper, we

model this evolution of joint influence posed by multiple external

events on the search behavior of users.

As mentioned in the previous paragraph, the major limitation of

the previous work by Karmaker et.al. [20] is the assumption that

influence posed by one event is independent of the other events. In

this paper, we relax this assumption by providing a new problem

formulation, i.e., modeling the joint influence posed by multiple

events on user search behavior. Specifically, we introduce a new

data mining problem, where, given a search query log and a set of

(correlated) events, the task is to mine both these datasets to infer

the joint influence posed by the provided set of (correlated) events

on triggering queries from users. This specifically means, beside

measuring the influence of the primary event that triggered the

query (lets call it Direct Influence), the task also requires to measure

the influence of secondary (correlated) events for the same (lets call

it Indirect Influence). This is a new problem because besides com-

puting the degree of influence posed by each event, we also need to

come up with a way to compute how their influences are temporally

correlated to each other. The joint influence mining task naturally

raises many associated interesting research questions, including,

how to come up with a numerical formula for measuring influence

that is comparable across multiple events (note that, the influence

scores computed by Karmaker et.al. [20] are not directly compara-

ble across multiple events), how influence of multiple events jointly

evolve over time and how they correlate in the temporal dimension

etc. (see section 3 and section 5.2 for a detailed list of questions).

To solve the joint influence modeling task, we propose a novel

mining algorithm based onMultivariate Hawkes Process [23], which

is a mutually exciting point process suitable for modeling the fre-

quencies of random events. The joint influence modeling approach

proposed by us has several benefits over the independent influence

model proposed in [20]; first, it relaxes the assumption that each

event poses an influence that is independent of the other events

and thus can model real word scenarios better; second, it can cap-

ture the temporal correlation of influences posed by two correlated

events providing a way to categorize direct influence versus indirect

influence and thus can leverage this correlation to better model the

evolution of joint influence over time; third, it provides a formal

way to measure the influence of multiple events in a comparable

numerical scale. Another beneficial feature of the proposed method,

as demonstrated by the experimental results (section 6), is that

the proposed joint influence model is fairly general and is widely

applicable on various interesting prediction tasks and search intent

related applications (e.g., query suggestion, query auto-completion)

and obtains superior results in comparison to multiple baseline

methods. The core contributions of this paper are listed below:

(1) We introduce the novel problem ofmodeling the (temporal) de-

pendency across multiple events in terms of the influences posed

by them on user search behavior. To the best of our knowledge,

this problem has not been studied before.

(2) We propose a Joint Influence Model based on Multivariate
Hawkes Process which captures the joint-influence posed by mul-

tiple events on user search behavior as well as models how this

joint influence evolves over time.

(3) We present efficient numerical techniques to compute the

likelihood of any query log data w.r.t. the proposed Joint Influence
Model; which provides us with a way to estimate the optimal

parameters of the model by maximizing the likelihood.

(4) We evaluate the proposed Joint Influence Model using two

months query-log data from https://search.yahoo.com/. Experi-

mental results show that the model can indeed capture the tempo-

ral dynamics of the joint influences over time and can be applied to

solve various interesting prediction problems as well as real-word

application scenarios, e.g., query auto-completion.

2 RELATEDWORK
Search query logs have been extensively studied to understand user

search behavior and provide better search experience [17, 22, 32].

Existing work mostly focused on the inference of users’ search

intent based on their own search habit and search history. On the

other hand, our paper tries to model how user behavior on a search

engine is influenced by external factors such as trending events.

Temporal Information Retrieval [4, 8, 11, 21] and Event Detec-

tion [2, 3, 12, 29, 35] are two areas closely related to our work.While

Event Detection has been studied vastly in the literature (see [3]

for a recent survey), research interest on Temporal Information

Retrieval has grown recently [8]. However, we emphasize that, nei-

ther of these is the intended goal of this study and our primary

motivation is somewhat orthogonal, i.e., given that some (possibly

multiple) events have already been reported, we go one step further

to investigate how these events may jointly impact/influence the

search behavior of the users.



The notion of event-based retrieval was introduced by Strötgen

and Gertz [27] by returning events instead of documents. Zhang et

al. [34] addressed the detection of recurrent event queries. Ghoreishi

and Sun [14] introduced a binary classifier for detecting queries

related to popular events. Kanhabua [19] extended the work [14] by

enabling the classifier to detect less popular queries beside popular

ones. However, all these approaches are supervised classification

methods and largely depend on the quality of training labels pro-

vided by humans, whereas our approach is unsupervised.

Kairam et. al. [18] investigated the online information dynam-

ics surrounding trending events, by performing joint analysis of

large-scale search and social media activity. Matsubara et. al. [24]

presented a new model for mining large scale co-evolving online

activities. Pekhimenko et al. [25] designed a system named “Pock-

etTrend" that automatically detects trending topics in real time,

identified the search content associated to the topics, and then in-

telligently pushed this content to users’ local machine in a timely

manner. However, none of these studies provide answer to the

question: how to model the evolution of joint influence posed by

multiple events on user search behavior, which is one of the pri-

mary motivations of our work. The closest match to this paper is

the work by Karmaker et.al. [20] where they first introduce the

problem of modeling the influence of popular trending events on

user search behavior. However, as mentioned in section 1, their

problem definition was based on the unrealistic assumption that

only one event can influence the triggering of a particular query

and the influences posed by multiple events are independent of each

other. In this paper, our primary focus is to relax these assumptions

and propose a more realistic model to capture the joint influence

of multiple events.

Another important topic related to this paper is point process,

which has been used to model social networks [5] and natural

events [36]. People find self-exciting point processes naturally suit-

able to model continuous-time events where the occurrence of one

event can affect the likelihood of subsequent events in the future.

One important self-exciting process is Hawkes process, which was

first used to analyze earthquakes [36], and then widely applied to

many different areas, such as market modeling [13], crime modeling

[26], conflict [33], viral videos on the Web [10] etc. In this work,

we propose a novel Joint Influence Model based on multivariate

Hawkes process [23] that can capture the dynamics of simultaneous

influence by multiple events on user search behavior.

3 PROBLEM FORMULATION
Let, E = {e1, e2, ..., ek } be the set of all events for which we want

to analyze their influence on the user search behavior, where k is

the total number of events under consideration and each event ej
is represented in terms of natural text (for details on the represen-

tation of an event, refer to the work by Karmaker et.al. [20]). Also

assume that, each ej is associated with a set of queries that were

generated from influence (“to some extent”) by the same event. Let

this set be denoted by Q j = {qj1,qj2, ....}. Each qji consists of a
tuple <w ji , tji ,x ji>, where, w ji is the query-text, tji is the times-

tamp of receiving the query and x ji is a textual-similarity score

between event-text ej and query-textw ji . The higher the similarity

between ej andw ji , the higher the x ji score is. For details on how

we can get the query set Q j associated with each event ej and how

to compute x ji for an event-query pair, please see [20]. We omit

the details here due to lack of space.

Given the input data mentioned above, our goal is to model

the temporal dynamics of the joint influence posed by different

events in E on user search behavior. Specifically, we seek answers

to the following questions which were never investigated before:

1) Is there a way to computationally model the dependency among

different events in terms of the influences posed by them on user

search behavior? 2) How these (correlated) influences of multiple

events jointly evolve over time? 3) Given that we have seen a query

which is triggered by some event ej , how does that change the

future influence of some event other than ej? 4) Can we use the

correlation among multiple events to distinguish between Direct
Influence and Indirect Influence (defined in Section 1)? We also ask

the same questions raised by Karmaker et.al. [20], e.g., 5) How the

textual similarity between an influential event and an influenced

query affects the influence trend of that event? 6) How long the

influence of different events last? To provide answers to these

questions, we formally introduce a novel Joint Influence Model
based on Multivariate Hawkes Process, in the following section.

4 JOINT INFLUENCE MODEL
We model the joint influence of multiple events on user search

behavior through a generative multivariate point process where

each point corresponds to the submission of a new query influ-

enced by some event ej ∈ E. To be more specific, we propose a

new generative model based on Multivariate Hawkes Process (a

specific mutually exciting point process) to describe the generation

of the influenced queries. This way of modeling query generation is

beneficial because this would also allow us to quantify the influence

of different events on this generation process at any instant of time.

Multivariate Hawkes process is naturally suitable to our problem

scenario because it can model the frequencies of occurrences of

multiple events in the continuous time domain. For a detailed back-

ground onMultivariate Hawkes Process and for further justification

on why it is helpful, please refer to [23].

Let, Q = Q1 ∪Q2 ∪ .... ∪Qk , be the set of all query submissions

which were influenced by some event ej ∈ E. Additionally, letQ j be

the set of all queries that were triggered by the direct influence of

event ej . One naive way to collect Q j corresponding to event ej is
to retrieve queries from the search log that are textually similar to

event-text. For further details on how to retrieve a good quality Q j
for event ej , please refer to [20]. For modeling the joint influence, we

consider the union set, i.e.,Q , where each query qi ∈ Q corresponds

to one point in the multivariate point process and is represented

by the tuple <ti ,di ,xi>. Here, ti is the timestamp of receiving the

the query and thus, always ti > 0; di is the event which influenced

the generation of qi and thus, di can be any event ej , i.e., di ∈ E;
xi is the textual-similarity score between event-text, text (di ) and
query-text, text (qi ).

Given this setup, the core technical challenge in designing the

Joint Influence Model boils down to the problem of how we can for-

mally define the multi-event influenced query generation process;

in other words, how to fully characterize the multivariate point

process? This is not trivial due to the abstractness in the concept of



influence. We address this challenge by introducing the notion of

Influence Function, which we will discuss in detail in the following

section
1
:

4.1 The Influence Function
We characterize the multivariate point process by defining a set of

continuous functions λj for j = {1, 2, ....,k }, we call them Influence
Functions, which represent the influence of each event ej ∈ E on

the generation of the queries in Q at any instant of time. Design-

ing a suitable λ function is the main challenge towards building a

reasonable Joint Influence Model. However, defining influence is

more of a philosophical question rather than a mathematical one.

With this constraint in mind, we adopt to define influence through

different components that the final influence function should ac-

commodate and eventually, combine all these components into a

single influence function. We first start with various components

of the influence function λj .

Base Influence: We assume that there is always a non-negative

influence posed by each event ej ∈ E on the generation of the

queries in Q j . Thus, each event ej is associated with a constant ηj
which governs the rate at which we expect to observe new queries

influenced by event ej . This gives our first set of parameters for

the influence function, i.e., ηj ≥ 0 for j = {1, 2, ....,k }. In contrast,

the independent influence model proposed by Karmaker et.al. [20]

(let’s call it IIM), has only one parameter η for all events.

Decay Functions: The decay functions characterize how the in-

fluence of each event diminishes over time. Thus, each event ej is
associated with a decay function w j which decides how fast the

influence of the same event decays with time. Without loss of gen-

erality, we use Exponential Decay functions for our Joint Influence
Model. While other forms of the decay function are certainly pos-

sible, the investigation of the choosing the right decay function is

orthogonal to the goal of this research. Mathematically, Exponential

Decay Functions are represented as the following:

w j (t ) = α j exp(−α j t )

The corresponding cumulative decay function is the following

(we will need this later):

w̄ j (t ) = 1 − exp(−α j t )

In contrast, IIM [20] has one decay parameterw for all events.

Impact Functions: Whenever the search engine receives a query

triggered by some event ej , we assume that this newly received

query increases the influence of all events (not only ej ), which in

turn, increases the probability of receiving further queries influ-

enced by different events. The more we receive new (influenced)

queries, the higher the influence of different events become; yield-

ing a higher probability of receiving more influenced queries in the

future. Thus, the influence of different events as well as frequency

of influenced queries we receive mutually grow together, which

is similar to the idea of mutually exciting multivariate point pro-

cesses [16]. Note that, for some event (mostly uncorrelated events),

the increment of its influence can be zero which is also expected.

1
All the codes and evaluation scripts for experimentation can be found at the following

link: (https://bitbucket.org/karmake2/influencemodeling/src/master/)

Given that we have received a new queryqi (<ti ,di ,xi>) triggered
by event di , the amount by which the influences of different events

increase depends on the textual-similarity score, i.e. xi , between
the event-text and the query-text. This is intuitive because, highly

relevant queries are expected to have more impact on the change of

influence than less relevant queries. To capture this, we introduce

a set of Impact Functions which govern how the influence of all

events change depending on the textual-similarity score between

the newly received query and its triggering event. Let us denote

these Impact Functions by the notation дdi (xi ). The interpretation
of дdi (xi ) is as follows: assuming that the newly received query

qi was triggered by event di and the textual similarity between

text (di ) and text (qi ) is xi , the influences of all the events are then
increased in proportion to дdi (xi ).

Note that, reception of query qi increases the influences of all
events by the same amount, i.e., by дdi (xi ): which is not desirable.

To address this issue, we have a whole new set of parameters,

namely “Mutual-Influence Co-efficients" which we will discuss

shortly after this. However, the purpose of “Impact Functions” is

solely to define how the influence of an event changes based on the

textual-similarity score between the newly received query qi and
its triggering event di .

Impact functions take the textual similarity score xi as an input

parameter. The exact form of Impact Function we choose would

thus depend on the distribution of xi , let us call it Intent-Match
Distribution. Below we discuss the Intent-Match Distribution briefly,

choose a reasonable function for it and then choose the correspond-

ing suitable Impact Function.
Intent-Match Distribution: Intent-Match Distribution is essen-

tially the distribution of the textual-similarity score between the

triggering event and the influenced query. For textual-similarity

score, we choose the following modified version of the BM25 intro-

duced in the work [20] (The details of this function and rationale

behind choosing it can be found in the paper [20] ). Let,WE =<

WE1
,WE2

, ...,WEn > be the “event-text” andWq =<Wq1
,Wq2

, ...,Wqn >

be the “query-text”. Then,

xi (WE ,Wq ) =

|WE |∑
i=1

ω(WEi ).IDF (WEi ).TF (WEi ,Wq ).(k1 + 1)

TF (WEi ,Wq ) + k1.(1 − b + b .
|Wq |

avдql )

subject to

|WE |∑
i=1

ω(WEi ) = 1 (1)

Note that, the textual-similarity score xi is independent of the
past history of received queries and solely depends on the similarity

between the “event-text" and the “query-text". Further, xi ≥ 0.

To specify the Intent-Match Distribution, we hypothesize that a
power law probability distribution is the most suitable for our case

because of the following reasoning: among the set of all queries that

are influenced by some event ej , very few queries would exactly

match with the details in the event-text, while a lot of queries intent

would match the details only partially or marginally (these are gen-

eral exploratory queries). The higher the intent-match, the rarer the

frequency becomes; in fact, the frequency decreases exponentially

with the increase in textual-similarity. Our empirical evaluation

also supports this hypothesis (details in section 6.1).



Based on the argument presented above and without loss of

generality, we select “Pareto distribution" as our Intent-Match Dis-
tribution, which is a popular power law probability distribution.

“Pareto distribution" is defined on the half line [0,∞) and has two

parameters µ > 0 and ρ > 0. Each event ej is associated with a

Intent-Match Distribution fj (“Pareto distribution” in this case).

fj (x ) =

ρ j µ
ρ j
j

(x + µ j )ρ j+1
(2)

Under the restriction that ρ j > 2, a suitable impact function

is the following with parameters ρ j ≥ 0, µ j ≥ 0, ϕ j ≥ 0, ψj ≥ 0

(Please see [23] for details and rationale) :

дj (x ) =

(ρ j − 1)(ρ j − 2)

ϕ j (ρ j − 1)(ρ j − 2) +ψj µ j (ρ j − 2)

(ϕ j +ψjx ) (3)

Thus, each event ej is associated with a Intent-Match Distribu-

tion fj as well as an impact function дj . In contrast, the IIM [20]

has only one impact function д(x ) for all events, which was defined

as д(x) = x ; whereas, дdi (xi ) is a generalization of that with more

flexibility to capture the impact.

Mutual-Influence Co-efficients: While the impact function cap-

tures the relationship between the textual-similarity of an “influ-

enced query-triggering event pair” and the corresponding change

in the influence of an event, it fails to distinguish the different im-

pacts the same query might pose for different events. For example,

the submission of query “Trump Indiana Results” should directly

indicate an increasing influence of the event “Donald Trump wins

Indiana primaries” (This is the Direct Influence); however, the same

query might have little/no indication about the increasing influence

of the event “Messi scores a hat-trick against real madrid” (lets call

it No Influence). At the same time, query “Trump Indiana Results”

might have an indirect indication about the increasing influence

of the correlated event “Hillary Clinton results for Iowa Primaries”

(The is the Indirect Influence). Modeling these inter-dependencies

among multiple events in terms of the influence posed by them is

one of the central key questions we investigate in this paper. Our

proposed Joint Influence Model addresses this question by intro-

ducing a new set of Co-efficients, we call them Mutual-Influence

Co-efficients, which is a unique component of our proposed model.

To capture the three types of influences, i.e., Direct Influence,
Indirect Influence, No Influence as mentioned above; we introduce

a k × k matrix of coefficients which we call the Mutual-Influence

Co-efficients.

MIC =



ν11 ν12 ν13 . . . ν
1k

ν21 ν22 ν23 . . . ν
2k

. . . . . . . . . . . .

νk1
νk2

νk3
. . . νkk



The diagonal elements of the matrix represent Direct Influence,
while non-diagonal elements represent Indirect Influence. We also

impose the constraint, νji ≥ 0 for i, j = {1, ....,k }. A zero value

for any element in theMIC matrix represents No Influence, while
higher non-zero values indicate Significant Influence. Thus, theMIC
matrix contains valuable information about the inter-dependencies

among multiple external events in terms of their influence on user

search behavior.

Influence Function and Query Generation Process: So far, we
have discussed all the components we needed to define our in-

fluence function. Below we present the actual definition of the

influence function by combining all these components:

λj (t ) = ηj +

k∑
j=1

νji

∫
(−∞,t )×R

w j (t − s)дj (x )ej (ds × dx ) (4)

Now, we define the mutually-exciting query generation process:

Definition 4.1 (Mutually-Exciting Query Generation Pro-

cess). Let us assume that, we observe queries in the form of triples
<ti ,di ,xi> for 1 ≤ i ≤ n, where ti ∈ [T∗,T

∗
] and ti > ti−1, di ∈

{1, 2, ....,k } and xi ∈ R+. For the i-th query, it occurs at timestamp ti ,
the triggering event is di and the corresponding textual-similarity is
xi . At any instant of time t , each event ej for j = {1, 2, .....,k } has an
influence λj defined by equation 4. This constitutes our Generative
Multivariate Hawkes Process.

For a Multivariate Hawkes Process to be well defined, we need

the following two conditions to be satisfied:

(1) The maximum of the Eigen Values of the MIC matrix is

defined as the spectral radius ofMIC , i.e,
Spr (MIC) = max(eiдenValues(MIC)). Multivariate Hawkes

Process requires the following condition to satisfy:

Spr (MIC) < 1

(2) The decay functions must satisfy the following constraints:∫ ∞
0

tw j (t )dt < ∞

Finally, for computational feasibility, we present the numerical

version of the continuous influence function in equation 4 below.

Let us assume that we have observed queries at points {ti }, for
1 ≤ i ≤ n. Then, for any timestamp ti , the influence of event j,
λj (ti ) is defined as:

ˆλj (ti ) = ηj +

i−1∑
m=1

νj,dmw(ti − tm )дdm (xm ) (5)

4.2 Estimation of the Optimal Parameters
This section presents the estimation techniques for the optimal

parameter values of the influence function. For this purpose, we

define the likelihood function for any observed sequence of queries

with respect to the proposed mutually exciting multivariate point

process. We find the optimal parameters by maximizing the like-

lihood of the observed query data. Specifically, the log-likelihood

function corresponding to the Mutually-Exciting Query Generation
Process (see Definition 4.1) looks like the following:

(6)

logL =

d∑
j=1

∫
[T∗,T ∗]×R

log λj (t )ej (dt × dx)

+

k∑
j=1

∫
[T∗,T ∗]×R

log fj (x)ej (dt × dx) −

k∑
j=1

Λj (T
∗
)

Here,T ∗ is the upper bound of the observation period and Λ̂j (T
∗
)

is called the compensator function and is defined as follows:

(7)
Λj (t ) = ηj (t −T∗) +

k∑
m=1

νjm

∫
(−∞,t )×R

[ŵ j (t − u)

− ŵ j (T∗ − u)]дm (x)em (du × dx)



Numerical Computation: For computational feasibility, we now

present the way to numerically compute the log-likelihood function

defined in Eqn (6). Specifically, the numerical version of the log-

likelihood function takes the following form:

log L̂ =

n∑
i=1

log
ˆλdi (ti ) +

n∑
i=1

log fdi (xi ) −
k∑
j=1

Λ̂j (T
∗
) (8)

While computation of fdi (xi ) is straight-forward from equation 2,

computation of
ˆλdi (ti ) and Λ̂j (T

∗
) are more involved. Below we

present the exact formulas to compute
ˆλj (ti ) and Λ̂j (T

∗
) omitting

the derivation details due to lack of space. We assume exponential

decay function, i.e.,w j = α j exp(−α j t ), for the exact computational

formula, while other forms of decay functions are certainly possible.

(9)

ˆλj (ti ) = ηj + [λj (ti−1) − ηj ] exp[−α j (ti − ti−1)]

+ νj,di−1
дdi−1

(xi−1)α j exp[−α j (ti − ti−1)]

(10)Λ̂j (T
∗
) = ηj (T

∗ −T∗) +

n∑
i=1

νj,di w̄ j (t
∗ − ti )дdi (xi )

By plugging in equation 2, 9 and 10, we obtain the complete

numerical version of the log-likelihood function as follows:

(11)

log L̂ =

n∑
i=1

log

{
ηj + [λj (ti−1 − ηj )] exp[−α j (ti − ti−1)]

+ νj,di−1
дdi−1

(xi−1)α j exp[−α j (ti − ti−1)]

}

+

n∑
i=1

log
*.
,

ρdi µ
ρdi
di

(x + µdi )
ρdi +1

+/
-

−

k∑
j=1



ηj (T

∗ −T∗) +

n∑
i=1

νj,di w̄ j (t
∗ − ti )дdi (xi )




Here, дdi (xi ) is defined by as:

дdi (x ) =

(ρdi − 1)(ρdi − 2)

ϕ j (ρdi − 1)(ρdi − 2) +ψdi µdi (ρdi − 2)

(ϕdi +ψdi x )

Given the log-likelihood function in equation 11, the set of pa-

rameters associated with it is the following:

Θ =

{
ηj ,α j ,νji , ρ j , µ j ,ϕ j ,ψj

}
, where (1 ≤ i, j ≤ k) (12)

Incorporating L2 regularization, the optimization problem to

find the optimal parameter set Θ
∗
is written as follows:

Θ
∗

= arg max

Θ

(
log L̂(Θ) − ||Θ| |

)
(13)

Here, | |Θ| | is the L-2 norm of the parameter vector Θ. One can

use any non-linear optimization method to solve this maximization

problem. Nelder-Mead Simplex Method [15] is one such popular

optimization technique. Another useful approach is the Sequential

Least SQuares Programming (SLSQP) [6].

5 EXPERIMENTAL DESIGN
5.1 Data-set
Due to the absence of any readily available joint event-query dataset,

we decided to create one from two sets of available data-sets: one

for popular events and one for user query history. We call these

two data sets Event dataset and Query-Log dataset respectively. The
following two paragraphs provide details about these two data-sets.

Section Total Avg. Avg. Total Avg.
# of Title Body # of Textual
events Length Length queries Sim.

Movies 25 18.88 458.08 193,282 2.49

Sports 15 19.53 508.4 616,449 2.48

US 18 20.38 487.77 204,926 1.99

World 11 18.18 438.81 22,197 1.96

Table 1: Description of Event-Query Joint Dataset

Event data-set: An obvious choice for a text data set describing

events is news articles (though other data such as social mediamight

also be applicable). The NYTimes Developers Network (thanks to

them) provides a very useful api called “The Most Popular API" [1],
which automatically provides the url’s of the most e-mailed, most

shared and most viewed articles from NYTimes.com during the last

month from the date of the issue of the query. We chose to use

this API because of two major benefits: 1) it automatically removes

duplicate articles, thus we don’t need to deal with cases where

multiple articles are related to the same event. 2) it only provides

the most popular articles from NYTimes, thus the quality/accuracy

of the events represented by these articles is very high. Using this

API, we collected the most e-mailed, most shared and most viewed

articles for the month: April, 2016. Each article consists of a tuple

<title-text, body-text, timestamp>. Among different categories of

news, we used four categories for our experiments: US (National
Affairs), Movies, Sports andWorld (International Affairs).

Query-Log data-set: To analyze the user queries contemporary

to the articles in Event data-set, we use the two-months (April

and May, 2016) user query log data from the widely used search

engine at https://search.yahoo.com/. Each query submission q is

represented as a tuple <query-text , timestamp>. The two-months

query log data contains 105, 925, 732 query submissions in total.

Query-Event Joint data-set: To create the Query-Event Joint

data-set, for each article ej in the Event data-set, we retrieved top

relevant queries that have at least a similarity score of 1.25 (with

respect to ej ) according the textual similarity function in equation 1

and discarded the rest. This filtering step is reasonable because if

the textual similarity is very low (less than 1.25), we assume that

there is no influence of ej on the query. This process provides us

with a set of influenced queries triggered by each event from the

Event data-set. The summary of this data-set is presented in Table 1.

5.2 Qualitative Evaluation of the Model
It is not possible to do a direct quantitative evaluation of the influ-

ence model due to the lack of ground truth information. Thus, to

evaluate the quality of the proposed Joint Influence Model, we do a

formal investigation of the optimal parameters learnt through the

optimization process as described in section 4.2. Below, we present

the specific research questions we ask to evaluate the model quality

and provide the roadmap of how we can answer each question.

Research Questions:
(1) Is the “Query Generation Process” well-defined ?
The “Query Generation Process” is well defined only if the Spectral

Radius of the Mutual-Influence Coefficient Matrix is less than 1,

i.e, Spr (MIC) < 1. [see section 4.1 for more details]

(2) How to compare influences posed by different events?
We can answer this question by computing average influence



posed by each event and then compare them. The average influ-

ence vector where each element is the average influence of the

corresponding event can be obtained using the following formula:

(1k −MIC)
−1η, where, 1k is a k × k identity matrix.

(3) How to compare Direct Vs Indirect influence ?
The diagonal elements of matrixMIC represent the Direct Influ-
ence, whereas, the non-diagonal elements present Indirect Influ-
ence. We can do direct numeric comparison here.

(4) How to measure the influence longevity of an event?
The α parameter defines how fast the influence of any event

decays over time. Higher values of α denotes a faster decay.

(5) Is “Pareto Dist." suitable for “Intent Match Dist."?
To answer this question, we look at the empirical distribution of

“Intent Match" score between event-text and query text and verify

whether “Pareto Distribution" is a good match for it.

(6) How well the Model fit the original data?
This question can be answered by jointly plotting the simulated

influence of an event and the actual frequency of queries generated

by that event over the same period of time and see if the trend

of the simulated influence is similar to the trend of the actual

frequency of generated queries.

5.3 Applications and Quantitative Evaluation
In this section, we demonstrate the wide applicability of the pro-

posed “Joint Influence Model” by demonstrating how the model

could be used to solve various interesting prediction problems as

well as real-world problems associated with search engine systems.

Another benefit of these experiments is to conduct indirect quanti-

tative evaluation of the Joint Influence Model as direct evaluation is

impossible due to the lack of ground truth data for influence which

is an abstract concept. The primary purpose of these experiments

is to see if modeling the influence inter-dependencies among multi-

ple events actually help us achieve better performance in real life

application scenarios. To achieve these goals, we present a set of

prediction tasks / application scenarios and provide a roadmap on

how we can adopt the “Joint Influence Model’ to solve these tasks.

Application Tasks:
(1) Predict the most influential event in the future:
We assume the influence of an event in the current hour is propor-

tional to the frequency of queries generated by it in the next hour.

Thus, the event with the highest influence score in the current

hour is predicted to be the event that generates highest number

queries in the next hour. We then compare this predicted most

influential event with the actual most influential event (computed

from the original query log) and based on that, we can report the

accuracy of the prediction for a separate held-out testing set.

(2) Rank multiple events based on their future influences:
This prediction problem is similar to previous prediction problem,

except that, now we want to predict the ranking of events in

terms of their future influence instead of just predicting the future

top influential event. Again, we use the current hour influence

scores to predict the next hour’s generated query frequencies

and rank the events accordingly. To evaluate the quality of the

ranking, we compare the predicted ranking against the actual

ranking obtained from the query log and compute two different

popular ranking evaluation metrics: i.e, NDCG [30] and Rank

Biased Overlap (RBO) [31].

(3) Predict the most frequent query in the future:
This prediction problem is the same as the prediction problem in

(1) except that now we want to predict the most frequent query

in the future instead of the most influential event. For this predic-

tion task, we use a slightly modified version of the original “Joint

Influence Model” where apart from computing the evolving influ-

ence at the event level, we also compute the evolving influence at

the query level. The basic idea is to break each event-level influ-

ence into smaller units where each unit would correspond to the

query level. We omit the full details of process due to lack of space.

(4) Rank queries based on their future frequencies:
This prediction problem is similar to the prediction problem in

(2) except that now we want to rank queries instead of events.

Again we report NDCG [30] and Rank Biased Overlap(RBO) [31]

to evaluate the quality of the predicted ranking.

(5) Solve a real world application problem, e.g., query auto
completion task:
Finally, we select Query Auto Completion as a goal task and use

our proposed “Joint Influence Model” to solve it. Specifically, for a

new query from the testing set, we look at the first word and try

to predict the exact query based on the latest available influence

scores of all the queries starting with the first word. Based on

these influence scores, we rank the potential queries and then,

compute the reciprocal rank of the actual query in the predicted

ranked list. We repeat the whole process for all the queries in a

separate held-out testing set and report the mean reciprocal rank

(MRR) [28], which is the most popular evaluation metric used in

measuring the performance of query auto completion tasks.

Baseline Methods: For all the quantitative evaluation tasks, we

compare the proposed Joint Influence Model against the obvious

baseline method, i.e., Independent Influence Model (We call it “IIM")

introduced in [20]. If the Joint InfluenceModel( JIM) performs better

than IIM, we can conclude that capturing inter-dependencies is

indeed useful and can help us achieve superior performance in real

life applications. Additionally, as all these quantitative evaluation

tasks are some kind of forecasting problems, we also use some

popular time series prediction methods as the baselines including

Autoregressive Models (AR), Vector Auto Regression (VAR) etc.

Note that, our primary focus is not the quantitative evaluation,

rather demonstrating the usefulness of capturing influence inter-

dependencies among different events. Thus, experimenting with

many different forecasting methods is an orthogonal direction with

respect to our focus which we do not explore in this work. We also

include the simplest baseline method Naive Frequency (NF), where

the current hour’s frequency is used to predict the next hour’s

frequency. Table 2 lists down all the methods we experimented

and also provides with an acronym for each method for notational

convenience. JIM is the “Joint Influence Model" proposed in this

paper, whereas, “JIM-G" is a minor variation of “JIM" with the

constraint that events share the same α , i.e., the decay parameter.



Acronym Method
NF Naive Frequency

AR Auto Regression [9]

ARD Auto Regression with difference [9]

VAR Vector Auto Regression [7]

IIM Independent Influence Model [20]

JIM Joint Influence Model

JIM-G Joint Influence Model-Generalized

Table 2: Methods Compared for Quantitative Evaluation

parameter η α ρ µ ϕ ψ

Movies 0.1961 0.8697 4.9706 3.0197 0.4542 0.1644

Sports 0.317 1.1999 6.2745 4.2272 1.1608 0.5304

US 0.2328 1.0999 6.3056 1.777 0.6962 0.508

World 0.074 0.677 3.9747 1.5226 0.2465 0.1685

Table 3: Parameters learnt for different categories of events

Movies (0.9319) Sports (0.9649) US (0.9192) World (0.9213)

Table 4: Spectral Radius of MICMat. for different categories

6 RESULTS
6.1 Qualitative Evaluation of the Model
First, we do a qualitative investigation of the optimal parameters

learnt through the optimization process as described in section 4.2.

Table 3 presents these learnt parameters. While the individual num-

bers in Table 3 are not very meaningful, the comparison across

different categories of events is quite interesting. For example, η
for “Sports" category (0.3170) is generally much higher than that

for “World" category (0.0740), suggesting that the general interest

in “Sports" events is much higher than “World" events among the

common mass. Another interesting parameter is α , which indicates

the longevity of influence for different categories of events. Accord-

ing to Table 3, “World" events (α = 0.6770) usually have a longer

lasting influence compared to “Sports" events (α = 1.1999). Next,

we move onto providing answers to the specific research questions

asked in section 5.2, sequentially one at a time.

Is the “Query Generation Process” well defined?
Table 4 shows the spectral radius of Mutual-Influence Co-efficient

Matrix obtained for different categories of events. It is evident that,

all the numbers are less than 1. Thus, we conclude that, the “Query

generation process” is indeed well defined.

How to compare influences posed by different events?
Table 5 reports the top 2 influential events from each category

along with their average influence score computed by the formula

presented in section 5.2. For example, the movie “Captain America:

CivilWar" was found to be themost influential event in the “Movies"

Category with an average influence score of 11.5514, while “Donald

trump Vs Hillary Clinton" was found to be the most influential event

(average score 14.0117) in the “US" category. Manual inspection

reveals that all these reported influential events are indeed popular

events which match with our intuition.

How to compare Direct Vs Indirect influence ?
Table 6 reports the average of the diagonal elements (Direct In-
fluence) as well as the non-diagonal elements (Indirect Influence)
of the MIC matrix for each category of events. It is evident that

the influence posed by the triggering event, i.e., Direct Influence is
significantly larger than that of a non-triggering event, i.e., Indirect
Influence which also concur with our expectation. For example,

Direct Influence (0.6342) of events in the “US" category is much

higher than the Indirect Influence (0.0201) in the same category. In

fact, this observation holds for any category.

How to measure the influence longevity of an event?
Direct inspection of α values from Table 3 can provide answer to

this question. For example, Table 3 suggests that “Sports" events

generally have short term influence (α = 1.1999 ), while “World"

events have comparatively long lasting influence (α = 0.6770 ).

Is “Pareto Dist." suitable for “Intent Match Dist."?
To answer this question, we show the plot for the empirical distribu-

tion of “Intent Match" score between event-text and query-text for

the events of “Sports" category in Figure 2. This figure demonstrates

that as the “Intent Match" score goes high, the number of queries

with corresponding score becomes exponentially smaller, suggest-

ing that, indeed “Pareto Distribution" is a reasonable candidate for

the “Intent Match Distribution".

Figure 2: Intent Match Distribution for category “Sports”

How well the Model fits the original data?
We plot the the simulated influence of the event “release of movie

Captain America: Civil War" from the “Movies" category along with

the actual frequency of queries generated by that event during the

same span of time (hour 1500 to hour 1700) in Figure 3. It is clearly

evident that the simulated influence can indeed capture the trend

of the actual frequency of generated queries and thus, we conclude

that the model can indeed capture the influence trend with a decent

accuracy.

6.2 Applications and Quantitative Evaluation
This section presents the quantitative evaluation results for the five

different application tasks presented in section 5.3, namely, Predict

the most influential event in the future [Table 7], Rank multiple

events based on their future influences [Table 8], Predict the most

frequent query in the future [Table 9], Rank queries based on their

future frequencies [Table 10], Solve a real world application prob-

lem, e.g., query auto completion task [Table 11]. General inspection

of Table[7-11] reveals that, “JIM-G" is found to be the most robust



Sections
Events Movies Sports US World

1 Movie: “Captain America: Civil

War” (11.5514)

Horse-Racing: Kentucky

Derby (13.5346)

Donald trump Vs Hillary Clinton

(14.0117)

Panama Papers Released (0.8179)

2 Movie: “X-men: Apocalypse”

(2.0532)

Basketball: Stephen Curry

(6.6432)

Las Vegas Squatters Housing Col-

lapse (9.6340)

Philippine Presidential Race (

0.5821)

Table 5: Top two most influential events from four different Categories

Influence Movies Sports US World
Direct 0.5285 0.6495 0.6342 0.5798

Indirect 0.0255 0.0165 0.0201 0.0166

Table 6: Direct Influence Vs Indirect Influence

Figure 3: Demonstration of the goodness of fit for the event
“release of movie Captain America: Civil War"

method for all these different application tasks by obtaining the

highest number for performance metrics most of the time. For ex-

ample, for the task “Predict the most influential event in the future"

[Table 7], “JIM-G" is found to achieve the highest accuracy for all

four categories of events. For the “Query auto completion task", the

mean reciprocal rank for “JIM-G" is found to be the highest for all

categories except the category “World", for which “IIM" obtains a

slightly better number.

In case of event level predictions (Table 7 and 8), J IM turns out

to be the second best performing method. This suggests that the

Joint Influence Model indeed captures useful information which

results in its superior performance over other baseline methods.

The superiority of “JIM-G" over “JIM" may be explained by the

fact that, while “JIM" has more parameters for α (i.e., one α for

each single event) than “JIM-G" (i.e., single α for all events), “JIM"

might be suffering from over-fitting the training data while “JIM-G"

would learn a more general model suitable across multiple events.

This over-fitting problem seems more prominent for query level

predictions (Table 9 and 10), especially for category “World" where

the number of queries in the dataset is comparatively very small

(Table 1). Here, “JIM" cannot even achieve the second best perfor-

mance. We believe this is due to the sparsity of query level data.

Interestingly, the simple baseline “NF", achieves quite good result

at the query level prediction problems, while “VAR" suffers severely

from overfitting. However, “JIM-G" still performs the best for most

of the cases in query level predictions.

Metric Methods Movies Sports US World
NF 0.6638 0.6647 0.9302 0.5073

AR 0.7256 0.6818 0.8959 0.3934

ARD 0.7445 0.4249 0.9388 0.0609

Accuracy VAR 0.7399 0.4997 0.5105 0.1237

IIM 0.7193 0.6162 0.9376 0.5671
2

JIM 0.7520
2

0.6938
2

0.9491
2

0.5307

JIM-G 0.75311 0.69671 0.95421 0.59051

Table 7: Predicting the most influential event in future

Metric Methods Movies Sports US World
NF 0.9074 0.9105 0.9792 0.7798

AR 0.9370 0.9168 0.9460 0.6951

ARD 0.8604 0.7458 0.9529 0.4358

NDCG VAR 0.8831 0.7914 0.8950 0.5175

IIM 0.9348 0.8975 0.9831 0.8393
2

JIM 0.9485
2

0.9278
2

0.9870
2

0.8275

JIM-G 0.95081 0.93221 0.98791 0.85171

NF 0.6596 0.6800 0.8573 0.5140

AR 0.7052 0.6821 0.7695 0.3967

ARD 0.5320 0.4122 0.7267 0.0942

RBO VAR 0.5752 0.4808 0.6331 0.1647

IIM 0.6961 0.6479 0.8597 0.5992
2

JIM 0.7194
2

0.6980
2

0.8672
2

0.5623

JIM-G 0.72521 0.70691 0.87051 0.60871

Table 8: Predicting future influences of multiple events
(Wilcoxon’s signed rank test at level 0.05)

In summary, Table[7-11] suggest that the Joint InfluenceModel is

quite robust and useful in many different applications with superior

performance over a number of reasonable baseline methods.

7 CONCLUSION
The assumption that each popular event poses influence upon user

search behavior independently is unrealistic as many real world

events are closely related to each other. The primary contribution

of this paper is to relax this unrealistic assumption made in the

previous work by proposing a Joint Influence Model based on mul-

tivariate Hawkes Process that captures the inter-dependency of

multiple events in terms of the influence posed by them upon user

search behavior. Experimental results demonstrate that the pro-

posed method not only effectively capture the temporal dynamics

of joint influences by multiple events, but also when applied to

various application tasks, achieves superior performance most of

the time over different baseline methods that do not consider this

mutual-influence among multiple events. This signifies that the

mutual influence which exists among multiple correlated events is

an important factor which should be considered while designing

such influence models.



Metric Methods Movies Sports US World
NF 0.3281 0.4894

2
0.5717

2
0.3879

AR 0.38791 0.4794 0.5400 0.4504

ARD 0.2424 0.1965 0.4410 0.0443

Accuracy VAR 0.0023 0.0007 0.0029 0.0001

IIM 0.3413 0.3660 0.5408 0.47101

JIM 0.3642 0.4688 0.5563 0.3035

JIM-G 0.3820
2 0.51341 0.58431 0.4544

2

Table 9: Predicting the most frequent query in future

Metric Method Movies Sports US World
NF 0.5914 0.6693 0.8060 0.4465

AR 0.6713
2

0.7440
2

0.7789 0.5200

ARD 0.2642 0.2977 0.4717 0.0827

NDCG VAR 0.0087 0.0052 0.0136 0.0015

IIM 0.6355 0.6976 0.8121
2 0.65551

JIM 0.6484 0.7204 0.8022 0.4809

JIM-G 0.68701 0.76501 0.84301 0.6062
2

NF 0.4349 0.5707 0.6491 0.3665

AR 0.4947
2

0.5908
2

0.6102 0.4130

ARD 0.1803 0.2191 0.3237 0.0538

RBO VAR 0.0042 0.0019 0.0045 0.0001

IIM 0.4562 0.5174 0.6509
2 0.46761

JIM 0.4782 0.5724 0.6436 0.3048

JIM-G 0.50591 0.61721 0.67641 0.4332
2

Table 10: Predicting future frequencies for multiple queries.
(Wilcoxon’s signed rank test at level 0.05)

Metric Methods Movies Sports US World
NF 0.6427 0.8427 0.8489 0.6899

AR 0.7382 0.9129 0.8339 0.7471

ARD 0.2842 0.4077 0.5238 0.2754

MRR VAR 0.1911 0.1722 0.1186 0.3696

IIM 0.7839 0.9171 0.8896 0.92621

JIM 0.8082
2

0.9509
2

0.8903
2

0.8999

JIM-G 0.82261 0.95561 0.89881 0.9193
2

Table 11: Query Auto-Completion Results: MRR reported.
(Wilcoxon’s signed rank test at level 0.05)
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