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ABSTRACT
The promise of big data relies on the release and aggregation of data

sets. When these data sets contain sensitive information about indi-

viduals, it has been scalable and convenient to protect the privacy

of these individuals by de-identification. However, studies show
that the combination of de-identified data sets with other data sets

risks re-identification of some records. Some studies have shown

how to measure this risk in specific contexts where certain types of

public data sets (such as voter roles) are assumed to be available to

attackers. To the extent that it can be accomplished, such analyses

enable the threat of compromises to be balanced against the bene-

fits of sharing data. For example, a study that might save lives by

enabling medical research may be enabled in light of a sufficiently

low probability of compromise from sharing de-identified data.

In this paper, we introduce a general probabilistic re-identification
framework that can be instantiated in specific contexts to esti-

mate the probability of compromises based on explicit assumptions.

We further propose a baseline of such assumptions that enable a

first-cut estimate of risk for practical case studies. We refer to the

framework with these assumptions as the Naive Re-identification
Framework (NRF). As a case study, we show how we can apply

NRF to analyze and quantify the risk of re-identification arising

from releasing de-identified medical data in the context of publicly-

available social media data. The results of this case study show

that NRF can be used to obtain meaningful quantification of the

re-identification risk, compare the risk of different social media,

and assess risks of combinations of various demographic attributes

and medical conditions that individuals may voluntarily disclose

on social media.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; So-
cial network security and privacy; Formal security models; •
Social and professional topics→ Patient privacy;
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1 INTRODUCTION
Aggregation of scattered data sets is generally desirable in data

mining applications for at least two reasons. First, it enables the

analysis of relations between entities whose information is con-

tained in multiple scattered data sets; it is clearly impossible to

discover such connections without combining the data sets. Second,

it increases the redundancy in the data sets so that an otherwise

“weak” signal in an individual data set might become “stronger” in

an aggregated data set if the signal exists in multiple data sets, thus

increasing the chance of discovering something statistically signifi-

cant. This is why topics such as data integration, joint analysis, and

heterogeneous information networks analysis have all attracted

much attention in recent years in order to fully exploit “big data”

to discover knowledge for many applications. A good illustration

of this is the National Inpatient Sample (NIS) dataset provided by

Healthcare Cost and Utilization Project (HCUP) [14], which collects

data about patients from multiple hospitals to provide an aggre-

gate data set that enables discoveries that none of the participating

hospitals could accomplish on its own.

However, data sets often include sensitive information from in-

dividuals, there is a privacy risk in sharing them. This is generally

addressed by a combination of technical and legal means. The tech-

nical means include de-identification of the data of individuals by

removing key attributes like their names and addresses. Such pro-

tections have proven vulnerable to attack, so Data Use Agreements

(DUAs) ask the recipients of the aggregated de-identified data not

to take steps that would result in re-identification of individuals.

While such DUAs are a valuable tool, they are virtually impossible

to enforce, so it is important to estimate the risk of re-identification

based on technical protections.

The reasons that motivate data aggregation in the first place

are also precisely the reasons why it becomes more likely to infer

private information when linking together multiple data sets with

information about individuals. For example, suppose an organiza-

tion publishes a de-identified data set of medical records that also

contains demographic information of patients. An adversary with
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access to an external data set containing names and demographic

information may join the two datasets and thereby potentially re-

identify medical records of some individuals. This issue has been

particularly studied for de-identified medical records with external

knowledge provided by public voter rolls, but the class of such

studies includes other areas like de-identified social media records

with external data provided by public Web postings [2, 23, 27].

Thus it is important to assess the re-identification risk due to

the aggregation of data sets, especially with consideration of the

increased risk due to the emergence of large public data such as

social media. Failure to measure this risk raises inherent concerns

from individuals contributing data, and this creates barriers for

deploying such applications.

Unfortunately, how to quantify the re-identification risk due

to aggregation of data sets is a difficult scientific and practical

challenge. Multiple questions must be addressed formally. First,

how do we formally frame the problem scenario of re-identification

involving external knowledge? Second, how can we formally define

measures to quantify the risks? Third, how can we compute those

measures? Finally, how can we evaluate such measures? Existing

work has addressed some of these questions, but they largely remain

unanswered.

In this paper, we make a first attempt to address these questions

by developing a general probabilistic framework for analyzing and

quantifying the re-identification risk in the context of data aggrega-

tion. The framework consists of three models: a de-identified data

model, a model of external knowledge, and a risk model. From these

it is possible to find the probability that an individual may be re-

identified due to the availability of external knowledge. Specifically,

our framework combines the adversary’s external knowledge with

the statistical properties of the de-identified data set to quantify

the re-identification risk associated with the release. The goal is an

intuitive probabilistic risk metric that can be computed on a data set

(before releasing it) to assess the potential risk from releasing the

data set with consideration of the adversary’s external knowledge.

It is then possible to find the probability that an individual may be

re-identified due to the availability of external knowledge. To keep

the computation of the model parameters feasible and thus, make

the model practically useful, we propose an approximation of the

general framework, which we call NRF, the Naive Re-identification

Framework. NRF will provide a principled way to analyze how

re-identification risk might be impacted by changes in the available

external information. This can be done by comparing the risks as-

sociated with diverse external knowledge sources, thus facilitating

research on the significance of the existing public sources such as

different social media.

But why have a naive framework rather than a sophisticated

one? A sophisticated technique that cannot be used because it

cannot be instantiated will be less useful than a naive technique

that gets an approximate result. We are partly inspired by Naive

Bayes classifiers, which make assumptions that are only partially

true in many cases, but get meaningful results anyway. A more

grandiose analogy would be to describe the flight of a ball as a

parabola even though it is understood that accounting for friction

with the air would require a more sophisticated model.

As a case study to illustrate NRF, we show how we can apply the

model to analyze the risk of aggregating a (de-identified) medical

data set (the HCUP data set) and five social media data sets (Face-

book, Twitter, Instagram, Pinterest, and LinkedIn). Experimental

results show that the proposed framework can be used to obtain

meaningful probabilities of re-identification risk and enables us to

make a number of conclusions:

(1) The aggregation of HCUP with social media poses high risk

of re-identification, especially when multiple social media

are aggregated.

(2) Among all the five social media we studied Facebook poses

the highest risk, followed (in order) by LinkedIn, Pinterest,

Instagram, and Twitter.

(3) Among the many attribute values users voluntarily “leaked”

on social media, the demographic attributes pose the greatest

risk of enabling re-identification, followed by the medical

conditions that are disclosed in the medical data set.

Overall, these results show the great promise of the proposed frame-

work both as a general framework that can be further refined and

as a way to derive specific probabilistic risk models that can be

immediately applied to help assess re-identification risks before

releasing a data set and analyzing security aspects of social media.

The rest of the paper is organized as follows: Section 2 discusses

the related works in the literature. Section 3 presents a brief mo-

tivating example. Section 4 defines measure r∗ and describes the

general risk model in detail. Section 5 presents NRF as an approxi-

mation of the general risk model by incorporating some simplifying

assumptions. Section 6 describes a real life application of NRF with

the details of experimental setup, parameter estimation techniques

and results. Section 7 draws the conclusion and points to possible

future directions.

2 RELATEDWORKS
We develop a probabilistic model in order to quantify the risk of

re-identification of a relational data set in association with a public

relational data set. Our work is related to multiple lines of existing

work, which we review briefly.

De-identification techniques are widely used to protect users’

private information in public data sets. Typical examples of such san-

itization procedures include removal of some records (suppression),

reduction in the precision of certain attributes (generalization), and

adding noise to the records (randomization) [19]. However, the suc-

cess of these techniques in mitigating the risk of re-identification

has not been systematically demonstrated or investigated. Fur-

thermore, researchers have demonstrated several re-identification

attacks against de-identified data sets. These attacks have been

successful in re-identifying records in various kinds of de-identified

data sets including medical records [27], movie ratings [23], and

web search queries [1]. In fact, according to a systematic study on

publications related to re-identification attacks in 2011, an overall

mean proportion of successful re-identification is 0.262 for all stud-

ies and 0.338 for health data [12]. In particular, Loukides et al. [19]

have shown the feasibility of re-identification attacks against pa-

tient clinical data. However, all these works on re-identification

attacks are primarily case-studies where they consider some par-

ticular data set and the focus is to demonstrate its vulnerability

in terms of re-identification of individuals. Our work is different

from them because we propose a general and formal risk-model



Figure 1: Motivating Example.

to evaluate the re-identification risks associated with the release

of a de-identified data set with consideration of public external

data. The proposed model can thus be applied to any relational data

set. Another limitation of the previous works is that they assume

the adversary knows for sure that the target individual’s record is

included both in the de-identified data set and the external knowl-

edge data set. However, this assumption may not hold often in

real-life. Our approach overcomes this limitation by introducing a

probabilistic definition of the re-identification risk where the action

of an adversary is modeled in two steps. First, the adversary finds

out individual records with unique quasi-identifier values from the

de-identified data set; second, he/she tries to match these individual

records against the external sources being agnostic of whether the

external sources actually contain those individual records or not.

The risk is defined as the probability of the adversary’s success in a

unique matching that results in re-identification.

There are two well-established approaches to mitigate the risk

of re-identification attacks on de-identified data sets; those based

on syntactic metrics, and those based on differential privacy. Syn-

tactic metrics such as k-anonymity [28], l-diversity [21], and t-
closeness [17] directly quantify syntactic properties of a sanitized

data set. For example,k-anonymity says that for every quasi-identifier

group there should be at least k records. Such metrics can serve as

a way of evaluating the privacy risk of releasing de-identified data

sets when the syntactic propertymeasured is correlatedwith the pri-

vacy risk. A downside of these techniques is that they largely ignore

the attacker’s external knowledge. Indeed, while quasi-identifiers

are defined to be attributes likely to be found in external sources

such as publicly available data, there is no attempt to quantify the

likelihood that an adversary would know a particular attribute of a

given target individual. Our model overcomes this limitation of the

previous works by incorporating the disclosure probability of the

quasi-identifiers (called “Disclosure-Likelihood" in our proposed

model) given the external knowledge model.

Beyond techniques such as [4] which combine ideas from the

work on syntactic metrics, frameworks such as ϵ-privacy [20] at-

tempt to capture several privacy metrics. One such metric is differ-

ential privacy [8, 9]. Unlike syntactic metrics, differential privacy

is independent of the protected data set and the attacker’s back-

ground knowledge (i.e., it holds regardless of howmuch the attacker

knows). While differential privacy and its many variants are useful

to protect data sets, none is suitable as a quantification metric of

the risk. Indeed as pointed out in [15] the ϵ in differential privacy

is not a probability of identification or a measure of risk.

Evaluating the re-identification risk of health data has been stud-

ied extensively, for example in [10], [11], and [18]. Of particular

interest is the expert determination guidelines of the HIPAA pri-

vacy rules [24] which recommends assessment of the risk along



three axes: replicability, data source availability (sometimes called

knowability), and distinguishability. If all three are low, this indi-

cates a low risk, whereas if one or more is high, it indicates a high

risk. Unfortunately, the HIPAA privacy rule does not recommend a

specific method to calculate this risk or provide a threshold for it.

In contrast, our risk-model captures knowability (external knowl-

edge model) and distinguishability (data set model) and provides

associated equations to calculate the risk.

There is also work on privacy risks in online social networks. For

example, [30] considers the risk that patients will be re-identified

due to what medical students say on social media. Biega et al. [3]

proposes a probabilistic framework to evaluate the privacy risk

of users’ search histories. It should be noted that this work has a

different goal than ours because it measures the risk of attribute

disclosure, whereas we measure re-identification risk. This is not a

trivial distinction because attribute disclosure can occur without

re-identification or even if the target record is not in the data set.

More broadly, there is work on discovering and linking the different

profiles of a user across several social networks, for example [31]

and [26].

3 A MOTIVATING EXAMPLE
To motivate our work and explain the rationale behind the design

of the proposed probabilistic framework, we first present a toy

example (refer to Figure 1) of the re-identification framework. Sup-

pose that, there is a data set D which has been released publicly for

medical research purposes. The data set contains sensitive informa-

tion (e.g. DNA sequence, critical diagnosis etc) about patients along

with some non-sensitive information (demographics, non-critical

diagnosis etc) about the same. However, D has been de-identified

to ensure that it does not contain any information that can help

identify a single patient. Now, suppose that there is some adversary

who is interested in identifying individual patients from D, i.e., the
adversary tries to re-identify some individuals in D using some

external information sources. We denote the adversaries external

knowledge by E. We assume E consists of non-sensitive information

like patient demographics, address, non-critical diagnosis etc. The

adversary can then try to match E with D to re-identify patients

and extract sensitive information that was not meant to be released

and thus the patients privacy gets compromised. The schematic

diagram of this re-identification model is shown in Figure 1.

To see a more concrete example, refer to Table 1. Suppose that,

A and B are two patients who participates in dataset D, which is

released publicly after anonymization of the individuals. Let us

assume, D contains 3 attributes, namely, X , Y and Z , where, X and

Y are non-sensitive attributes (also called quasi-identifiers) and Z is

a sensitive attribute. Each cell represents the value of corresponding

attribute of corresponding individual. For example, the value of

attribute X for patient A is xa . In absence of any other information

source, the probability that some individual from this dataset will

be (uniquely) re-identified by an adversary is 0.0.

However, the scenario get complicated if the adversary has access

to some external information sources, e,g, social media, where the

users disclose their real identities. Assume that both patient A and

B use a common social forum E and the adversary can access the

public data from E. Now, if xa , xb or ya , yb and if X , Y are

Table 1: Toy example data.

Patient X Y Z
A xa ya za
B xb yb zb

publicly disclosed in E, then, for certain, the adversary will easily

re-identify patients A and B from dataset D and will know that,

A has Z = za and B has Z = zb . This means the re-identification

probability in this case is 1.0. However, if xa = xb and ya = yb ,
then, even if X , Y are publicly disclosed in E, its impossible for the

adversary to pinpoint A or B from dataset D as they are no longer

unique. Thus, probability of (unique) re-identification becomes

0.0. The situation becomes further complex, when the disclosure

of attribute X or Y in external source E becomes uncertain. For

example, if the disclosure probability of Y is zero and disclosure

probability of X is 0.5, then, the probability of re-identification of

either A or B becomes 1.0 − 0.5 × 0.5 = 0.75 (assuming xa , xb ).
Things get even more complex when the uniqueness of attribute A
or B or combination of (A,B) becomes uncertain.

The proposed framework intends to formally capture the intu-

itions discussed above in a general way. In the next section, we

present the proposed re-identification framework followed by the

simplification of estimation of different parameters of the frame-

work, which we call the Naive Re-Identification Framework, i.e.,
NRF.

4 A GENERAL RE-IDENTIFICATION
FRAMEWORK

Our goal is to formally analyze the potential risk of re-identification

due to releasing a de-identified data set D when the adversary has

access to a general external knowledge source denoted by E. (Note
that in the case when we have multiple external sources, we may

simply join all of them to form one unified external knowledge

source.) Such analysis is necessary before releasing any data set

due to the increased risk of re-identification from aggregation of

a released data set with additional (“external”) data sets that an

adversary may have access to (e.g., public social media). While some

existing work has addressed this problem in an application-specific

way (see Section 2), we hope to develop a general probabilistic

framework that can be applicable to analysis of any relational data

set. A probabilistic metric of risk has the advantage of being easy

to interpret.

However, without any further assumption about the data, how

can we formally define the re-identification risk? To address this

question, we start with a systematic analysis of the process of re-

identification. From the adversary’s perspective, re-identification

of individuals involves the following two different cases:

The first case is when the adversary has a particular target in

mind. Here, the adversary would first look at what attributes the

particular target has disclosed in public forums/social media, and

then see if he/she can locate the corresponding target record in

the de-identified data set using those disclosed attributes as quasi-
identifiers, which we define as those attributes that are not in and of

themselves unique identifiers, but which are sufficiently associated



to an individual record that they can be combined with each other

to yield a unique identifier.

The second case is when there is amore ambitious adversarywho

may not have a particular target in mind, but wants to re-identify as

many individual records as possible from the de-identified data set.

In this case, the adversary extracts individuals with unique combi-

nation of values for different sets of quasi-identifiers from the de-

identified data set. He/she then matches these quasi-identifiers with

his external knowledge source to re-identify individuals’ records

and link them with their real identities.

In both cases, successful re-identification attackwould depend on

two factors: 1) Availability of quasi-identifiers in the de-identified

data set that can uniquely identify individual records and 2) Dis-

closure of these quasi-identifiers in the public domain (e.g., fo-

rums/social media) which the attacker can exploit as external sources

of information. To capture the first factor, we introduce a data set
Model: the more quasi-identifiers the de-identified data set contains,

the higher the probability that some individual will be re-identified.

To capture the second factor, we introduce an External Knowledge
Model: the more people disclose some quasi-identifiers on the public

forums, the more likely the attacker knows them and uses them to

re-identify individuals. Finally, we can define the risk model based

on the re-identification risk with respect to the Data Set Model and
External Knowledge Model. Thus, the overall framework consists

of three components: (1) Data set Model, (2) External Knowledge

Model, and (3) Risk Model, which will be further explained in detail

below.

Notation. We will use bold-uppercase letters, e.g. X, to denote

random variables, and lowercase letters, e.g., x , to denote proba-

bilities. For example, we use P (X = x ) to denote the probability

of the event that random variable X is x . This convention is fol-

lowed throughout the paper. Table 2 summarizes the notations and

symbols used.

4.1 Data Set Model
We first need to model the de-identified data set D, which is to be

released. D would be assumed to contain attribute values of a set of

individuals that we would like to protect (e.g., patients in a medical

data set). Let X be the set of all attributes in the published data set

D (e.g., age, diagnosis codes, medication etc. in a medical data set).

Consider any subset of X , C ⊆ X (e.g., C={age, medication} in a

medical data set). We introduce a binary random variable UC to

represent the unique identification status of any individual with

respect to the set of attributes C , and define it as follows: UC = 1 if

some random individual can be uniquely identified (within D) with
respect to quasi-identifier set C (i.e., by just looking at the values

of the attributes in C), and 0 otherwise.

We can now define the concept of D-Uniqueness (Definition 4.1)

which is essentially the probability that UC = 1.

Definition 4.1 (D-Uniqeness). Given a set of attributesC ⊆ X ,
the D-Uniqueness ofC , uC , is the probability that a randomly chosen
individual from D would contain a unique combination of values for
the set of attributes C within data set D, i.e., uC = P (UC = 1). The
constraint P (UC = 1) + P (UC = 0) = 1 holds true.

Table 2: Table of notations. All random variables and proba-
bilities (except r∗D) are defined for a random individual.

D De-identified data set

E External source

X Attributes of D

x A specific attribute of D

C A subset of X

UC Unique identification status with respect to C in D

uC Uniqueness with respect to C in D, i.e., P (UC = 1)

Zx Disclosure status of attribute x

zC Disclosure-Likelihood of C ⊆ X , i.e., P (ZC = 1)

zx Disclosure-Likelihood of x ∈ X , i.e., P (Zx = 1)

QC Unique identification status with respect to C in E

qC Disclosure-Uniqueness w.r.t. C ⊆ X in E, i.e., P (QC = 1|UC = 1)
r∗D Re-identification risk for whole data set D

RD Individual re-identification status within D

rD Individual re-identification risk within D, i.e., P (RD = 1)

τi Usage status of public information forum i

Our data set model is essentially a key/value pair, where each

key C is a distinct subset of all attribute set X , the value is the

corresponding D-Uniqueness, i.e., uC . Intuitively, a data set with
high D-Uniqueness values for a large number of different subsets

of attributes is more vulnerable in terms of re-identification than a

data set with low D-Uniqueness values for the same.

4.2 External Knowledge Model
For our purpose of analysis, the relevant background/external

knowledge of the attacker (denoted by E) is any attribute-value pair
that can be joined with those in D. In particular, we are interested

in the probability that the value of an attribute x ∈ X will be dis-

closed to the adversary via availability of E. We use Zx to represent
the disclosure status of attribute x , which is defined as: Zx = 1 if

the value of attribute x has been disclosed to the adversary, and 0

otherwise.

We now introduce the notion of Disclosure-Likelihood (Defini-

tion 4.2) which is essentially the probability that Zx = 1.

Definition 4.2 (Disclosure-Likelihood). TheDisclosure - Like-
lihood of an attribute x , zx , is the probability that the value of at-
tribute x of a randomly chosen individual fromD is disclosed to the at-
tacker, i.e., zx = P (Zx = 1). The constraint P (Zx = 1) +P (Zx = 0) =
1 holds true.

In general, the probability of disclosing different quasi-identifiers

to the adversary is likely to be different, i.e., zx is not the same for

all x . The definition can be easily generalized to the Disclosure-

Likelihood of a group of attributes C , zC = P (ZC = 1) (see equa-
tion 4 for details).

Note that, disclosing a set of attributes alone is not sufficient

for a successful re-identification attack; rather, the set of values

(for those attributes) disclosed must also be unique among all the

records found in the external source E (We assume E as just another



data set here). Otherwise, it will not be possible to uniquely match

the individual records in D against the same in E. To capture this

requirement, we use QC to represent the uniqueness of the values

of an attribute set C in external source E, which can be defined

as: QC = 1 if some random individual has a unique combination

of values for the attribute set C within the entire data set E (i.e.,

no other individuals have exactly the same values for all these

attributes in C), and 0, otherwise.

Finally, we introduce the notion of E-Uniqueness (Definition 4.3)

which is the probability that QC = 1. Note that, E-Uniqueness is
different from the notion D-Uniqueness defined in Section 4.1.

Definition 4.3 (E-Uniqeness). The E-Uniqueness of a set of
attributes C ⊆ X , qC , is the conditional probability that a randomly
chosen individual from E would have a unique combination of values
for the set of attributes C among all the individuals within E given
that the same combination of values for C is also unique within the
de-identified data set D, i.e., qC = P (QC = 1|UC = 1).

4.3 The Risk Model
With the models for the de-identified data setD and external knowl-

edge E in place, we can now define the last component in the

framework, i.e. the risk model. Let RD be a random variable which

represents the re-identification status of some random individual in

D. That is, RD = 1 if some random individual is re-identifiable (from

D) by the adversary, and 0 otherwise. We first start by introducing

the definition of re-identification risk of an individual and later

extend it to the re-identification risk for the entire data set.

Definition 4.4 (Individual Re-identification Risk). Given
an external knowledge model E, the individual re-identification risk

rD (with respect to publishing data set D) is the probability that an
adversary will re-identify a random individual from D, i.e., rD =
P (RD = 1).

How can we compute this risk? To address this question, let

us examine the conditions that must be satisfied in order for a

re-identification to happen. Logically, successful re-identification

of individual t requires the adversary to identify a set of quasi-

identifiersC such that the combination of values of the attribute set

C for the individual t is unique in both D and E and the values ofC
for this individual are disclosed to the adversary through external

knowledge E. This analysis gives us the following equation of rD :

rD = 1 −
∏
C⊆X

[1 − {P (UC = 1) · P (ZC = 1|UC = 1)

· P (QC = 1|UC = 1,ZC = 1)
}
] (1)

where we consider all the possible C that the adversary might

have leveraged by taking a product over all of them. Inside the

product, there is again a product of three terms, which are intu-

itively very meaningful and reflect the following three conditions

to be satisfied for the re-identification to happen: 1) The adversary

must find a set of quasi-identifiers C such that the combination

of values of the attribute set C for an individual t is unique in D
(captured by P (UC = 1)). 2) Values of C for individual t are dis-

closed to the adversary through external knowledge E given that

C uniquely identifies t (captured by P (ZC = 1|UC = 1)). 3) Combi-

nation of values of the attribute set C for t is unique in E given

that t is also unique with respect to C in D and C has already been

disclosed to the adversary (captured by P (QC = 1|UC = 1,ZC = 1)).
Thus, the adversary will re-identify individual t only if t is unique
with respect to attribute set C in both D and E and also C has

been disclosed to the adversary, which the product P (UC = 1) ·
P (ZC = 1|UC = 1) ·P (QC = 1|UC = 1,ZC = 1) nicely captures. [1−
P (UC = 1) · P (ZC = 1|UC = 1) · P (QC = 1|UC = 1,ZC = 1)] is sim-

ply the probability that the adversary fails to re-identify individual

t based on the subset of attributesC . Finally, the outer product over
all attribute set gives the probability that no subset of attributes

would suffice to re-identify individual t and by subtracting it from

1, we get our desired re-identification probability.

Based on the individual re-identification risk, we can now further

define the overall re-identification risk as the probability of re-

identification of at least one individual by the adversary.

Definition 4.5 (Re-identification Risk). Given some particu-
lar external knowledge model E, the re-identification risk r∗D (with
respect to publishing a data set D) is the probability that an adversary
will re-identify at-least one individual whose record is in D.

An implicit assumption made by our definition of the risk is that

the re-identification of any individual would be harmful, which is

reasonable. Re-identification of multiple individuals is captured by

the “at-least” phrase in the definition.

This overall re-identification risk r∗D can be computed based on

the individual re-identification risk as follows:

r ∗D = 1 −

n∏
i=1

[1 − rD ] = 1 −

n∏
i=1

[1 − P (RD = 1)] (2)

where n is the total number of participants in data set D and RD
is the re-identification risk of some individual in D.

Equations 1 and 2 form the general probabilistic model for as-

sessing the risk of re-identification due to aggregation of data set D
and external knowledge E. While at this point, the model is not yet

“computable,” the framework takes a necessary first step toward

formalizing the re-identification risk in a very general way with

consideration of external knowledge in probabilistic terms, and

thus can serve as a roadmap for further refinement of each of the

component probabilities in the framework. The three concepts we

defined (i.e., D-Uniqueness, Disclosure-Likelihood, and E-Uniqueness)
are all essential for formally characterizing the re-identification

risk.

There are potentially many different ways to further refine the

probability terms involved in these equations, but a thorough dis-

cussion of them is beyond the scope of this paper. Below, we discuss

one line of instantiation of the framework, which we will use later

for experimental study with a medical data set as D and social

media as E.

5 NAIVE RE-IDENTIFICATION FRAMEWORK
A main challenge in applying the proposed formal framework to

a specific application data set is to estimate all those probabilities.

As always happens in statistical estimation, there is an inevitable

tradeoff between the accuracy of a probabilistic model and the fea-

sibility of parameter estimation. Specifically, a sophisticated model



that does not rely on any simplification assumptions can be ex-

pected to be more accurate for modeling the re-identification risk,

but such a model also tends to have many more parameters and

thus require many more data for accurate parameter estimation or

require data that we do not have available. Thus as a first attempt

to make the estimation (computation) tractable, we explored a rela-

tively simple instantiation of the framework where we introduced

multiple independence assumptions to make it much easier to esti-

mate the involved probabilities. As those assumptions are similar

to the independence assumptions made in the popular and effective

Naive Bayes Bayesian classification (i.e., the Naive Bayes classi-

fier [16]), we call this simplified framework Naive Re-identification

Framework (NRF). Although the assumptions do not actually hold

in reality, the NRF may still be able to provide us with useful ap-

proximations just as the Naive Bayes classifier is still quite useful

even though the independence assumptions made are not true. Of

course, further exploration of how to refine the framework with-

out making these independence assumptions is obviously a very

important future work.

We introduce two independence assumptions about D-Uniqueness

and E-Uniqueness.

Assumption 5.1 (Disclosure D-Uniqeness Independence).

Given a set of attributes C ⊆ X , the Disclosure-Likelihood of C is
independent of its D-Uniqueness. Mathematically,

P (ZC = 1|UC = 1) = P (ZC = 1)

Assumption 5.2 (Disclosure E-Uniqeness Independence).

Given a set of attributesC ⊆ X , the E-Uniqueness ofC is independent
of its Disclosure-Likelihood. Mathematically,

P (QC = 1|UC = 1,ZC = 1) = P (QC = 1|UC = 1)

Assumption 5.1 and 5.2 are generally not true, but are fairly rea-

sonable because, intuitively, attributes’ disclosure behavior would

hardly depend on how unique their value is and vice-versa. Apply-

ing assumption 5.1 and 5.2, Equation 1 reduces to the following:

P (RD = 1) =1 −
∏
C⊆X

[1 − uC · zC · qC ] (3)

where, we have uC = P (UC = 1), zC = P (ZC = 1), and qC =
P (QC = 1|UC = 1).

Here, the first term (uC ) in the inner product is the D-uniqueness
of attribute set C with respect to data set D, i.e., the probability
that the subset of attributes C will uniquely identify any random

individual t in D. The second term (zC ) is the Disclosure-Likelihood
of the subset of attributesC , i.e., the probability that the values of the
attribute setC of individual t will be disclosed to the adversary. The
third term (qC ) is the E-uniqueness of attribute set C with respect

to the external knowledge data set E, i.e., the probability that the

subset of attributes C will uniquely identify individual t within E
given that the combination of values of C is unique for individual t
within the de-identified data set D.

The probability P (UC = 1) can be directly computed from the

data setD itself, whereas P (ZC = 1) and P (QC = 1|ZC = 1) need to
be estimated from external knowledge sources E. Due to sparseness

of data used for experiments, we further make an independence

assumption about disclosure of different attributes:

Assumption 5.3 (Independent Disclosure). The probability of
disclosing attribute x to the attacker is independent of the probability
of disclosing attribute x ′ , x .

Compared with Assumption 5.1 and 5.2, this assumption is less

realistic since some attributes may tend to be mentioned together

in a data set, thus their disclosures would be correlated. However,

this assumption is necessary in order to alleviate the problem of

data sparseness; it is straightforward to introduce more dependency

between different attributes, but our data set would now allow us to

collect sufficient counts for all the combinations of attribute values.

Such dependent models, however, may be feasible for other data

sets, and should be interesting to explore in the future.

Using Assumption 5.3, P (ZC = 1) can be computed by multi-

plying the probabilities associated with the individual attributes

(Equation 4).

P (ZC = 1) =
∏
x j ∈C

P (Zxj = 1)
∏

x j ∈X \C

[
1 − P (Zxj = 1)

]
(4)

Here, x j denotes a particular attribute, i.e., x j ∈ X .

Given this, the next question is how to estimate the probabilities

P (Zxj = 1). Without loss of generalities, let us assume that there are

m different public information sources / forum (e.g., social media

platforms) from which the adversary may gather information about

target individuals. In this case, if some individual t whose data is in
D also (voluntarily) discloses attribute x j in any of thesem public

information sources, the adversary will learn x j and may use this

to re-identify t .
Let τi be a family of random variables defined for each public in-

formation source / forum i . Given a i , τi represents the membership

status of a random individual t in forum i . That is, τi = 1 if some

random individual t is a member of forum i , and 0 otherwise. With

this, P (Zxj = 1) can be computed as follows:

P (Zxj = 1) = 1 −

m∏
i=1

[
1 − P (τi = 1) · P (Zxij = 1)

]
, (5)

where P (τi = 1) is the probability that some random individual

t is a member of forum i , and P (Zxij = 1) is the probability that t
will disclose attribute x j in forum i (given that t is a member of

forum i).
To evaluate this special instance of the risk-model, we need

to estimate the values of the parameters shown in Table 3. Note

that this process depends on the specific context and application

scenario. Section 6 presents the details of parameter estimation for

a particular case study. Once the parameters have been estimated,

they can simply be plugged into the risk model to compute the

re-identification risk associated with the release of a data set D.

6 APPLICATIONS OF THE FRAMEWORK
In this section, we apply the refined risk model described in the

previous section to analyze the risk from aggregating a specific



Table 3: Parameter Summary for the Risk Model.

Parameter Description Ref. Eqn.
n Total participants in D 2

P (UC = 1) D-Uniqueness of attribute

set C w.r.t. D
3

P (τi = 1) Membership probability for

social media i
5

P (Zxij = 1) Disclosure-Likelihood of x j
in public forum i

5

P (QC = 1|UC = 1) E-Uniqueness of attribute

set C w.r.t. E
3

medical data set with social media data to demonstrate its useful-

ness. Our purpose is to use this example to illustrate how exactly

the proposed model can be used to analyze the risk in practice

and also to examine whether the results we will obtain by using

the framework are meaningful and useful. The model, however, is

completely general, and can thus be potentially applied to many

other data sets to perform similar analysis as done here.

6.1 Problem Scenario
Consider a scenario in which a hospital or a medical center wants

to encourage research by publicly releasing a de-identified data set

containing patients’ medical records and demographic information.

Naturally, such a data set would contain information deemed non-

sensitive (e.g., demographic attributes, common/temporary medical

conditions such as having a cold or fever), as well as extremely sen-

sitive information such as rare or stigmatized medical conditions

(e.g., HIV, cancer). The privacy risk here comes from the fact that

after an adversary acquires the de-identified data set, he/she can use

the demographics and non-sensitive medical information as quasi-

identifiers for a re-identification attack. In addition, the adversary

may gather information from external sources such as social media,

or public voter rolls, and use it to match individuals with similar

or identical quasi-identifier values. This matching is possible when

demographic information about individuals alongside with their

real identities are publicly available. In practice, such information

is frequently publicly available on online social networks or public

forums, and it can be gathered by browsing user profiles. Further,

people also often discuss their own illnesses and medical issues

on online health forums and social networking sites. This presents

another avenue through which information is disclosed to an adver-

sary. In order to avoid prematurely releasing a data set with high

risk of re-identifidcation, it is very important to be able to quantify

the risk of re-identification before we actually release the data set.

Below we show that our proposed model enables us to do this.

6.2 Data sets
We use two real-world data sets in our experiments. As the (de-

identified) medical research data set, we used the HCUP National

(Nationwide) Inpatient Sample (NIS) [13]. This data set contains 8

million de-identified inpatient medical records and 135 different

attributes such as demographics, ICD-9 codes for diagnosis and

procedures, and cost related attributes. For our experiments, we

Table 4: Demographics and Medical Conditions At-
tributes.

Demographics Medical Conditions
Age, Gender,

Race, Location

Aches, Poisoning, Meningitis, Mi-

graine, Arthritis, Insomnia, Diabetes,

Fever, Asthma, Acne, Ulcer, Anemia

only consider the 4 demographic attributes and 12 frequently dis-

closed medical conditions (Table 4). (Those 12 medical conditions

were chosen based on their high frequency of disclosure in the

crawled Twitter data set.) As external source of information, we

use a large number of Twitter post, crawled in 2015. This data set

which contains more than 310 millions random tweets was obtained

from Twitter (between February and October 2015). We use this

data set as an example of external source of information that an

adversary can take advantage of. Each tweet contains 27 different

attributes including the tweet’s text, user information, location, and

language of the tweet. We only used the text attribute of the tweets

and discarded the rest.

The HCUP data set contains the medical conditions (i.e., diagno-

sis information) as ICD-9 codes. These are 3 to 5 digit codes whose

exact values are unlikely to be known by an adversary. Indeed, ex-

ternal information sources such as social media platforms are more

likely to contain medical information in the form of commonly used

keywords rather than their exact ICD-9 codes. Therefore, we con-

sider an adversary with knowledge of medical conditions by their

popular or commonly used names. To capture this, we collected all

ICD-9 codes related to the 12 medical conditions considered (Ta-

ble 4) and transformed each code into the general medical term to

which it is most closely related. For example, ICD-9 code 493.01 and

493.02 stand for “Extrinsic asthma with status asthmaticus” and “Ex-

trinsic asthma with (acute) exacerbation”, respectively. We replaced

both 493.01 and 493.02 with the commonly used term “asthma”.

With this transformation, multiple ICD-9 codes were merged into

a single medical-condition term or concept. Note that this makes it

harder for an adversary to re-identify patients as the diversity in

the values of attributes decreased.

6.3 Estimation of the parameters
In order to apply the proposed model to analyze our data sets, our

main task is to estimate the risk model parameters described in

Table 3 based on the data sets in this scenario. We now discuss how

to estimate these parameters. 1) n is simply the total number of

records in D. 2) We estimate parameter P (UC = 1) (Definition 4.1)

based on the HCUP data set. The latter contains 16 different at-

tributes (4 demographic and 12 medical-conditions), yielding a total

of 2
16 = 65536 valid subsets of attributes. For each of these, we cal-

culated the portion of the individuals who had unique set of values

for that particular subset and used this proportion as an estimate of

P (UC = 1). 3) P (τi = 1) is the probability that any random patient

is a member of social media/public forum i . Social media usage

statistics data can provide reliable estimates for the values of τi [7].
Thus we set P (τi = 1)’s directly based on their respective usage sta-

tistics (Table 5). 4) P (Zxij = 1) is the probability that some random



Table 5: Social media platforms with usage percentage.

External Source (i) Usage (τi )
Twitter 19%

Instagram 21%

Pinterest 22%

LinkedIn 23%

Facebook 58%

patient will disclose some attribute x j (demographic attribute or

medical-condition) in social media i .
For a demographic attribute x j , P (Zxij = 1) can be estimated

based on the portion of users sharing their demographic attribute

x j on public forum i plus proportion of users for which the attacker

can infer x j from public forum i . In our experiments, we used values

obtained from [5, 6, 25, 29] and assumed that these values were the

same across all social media platforms. See Table 6 for details. In

the case of medical conditions, we approximate P (Zxij = 1) with
the probability that an individual will disclose a disease or medical

condition that he/she actually suffers from, i.e., P (Zxij
+ = 1|x j

+),
which can be formally written as follows:

P (Zxij
+ = 1|x j

+) =
P (x j

+ |Zxij
+ = 1) · P (Zxij

+ = 1)

P (x j+)
(6)

where we may assume P (x j
+ |Zxij

+ = 1) = 1, i.e., whenever an

individual discloses (on public forums or on a social media platform)

that he/she is suffering from some medical condition, he/she is

telling he truth, i.e., he/she does indeed suffer from that condition.

With this assumption, we get the following:

P (Zxij
+ = 1|x j

+) =
P (Zxij

+ = 1)

P (x j+)
. (7)

Here, P (Zxij
+ = 1) is the probability that an individual will dis-

close on public forum/social media i that he/she suffers from med-

ical condition x j . P (x j
+) is the probability that any random indi-

vidual actually has the medical condition x j . Estimation of P (x j
+)

for the 12 medical conditions were based on the National Health

Interview Survey [25]. To estimate P (Zxij
+ = 1), we collected all

sentences from social media i (twitter in this case) that mention

word x j (e.g., asthma) or some other synonyms of x j . Let this set

be Sx j which consists of candidate sentences that may disclose

that some patient suffers from condition x j . We can then classify

each sentence in Sx j into one of the two classes: Mx j , composed

of those sentences disclosing suffering from condition x j , and M̄x j ,

composed of those sentences that do not disclose suffering from

condition x j (e.g., those to raise social awareness about x j ). Specifi-

cally, We used a lexicon-based approach to decide which class the

sentence belongs to where each sentence is classified into classMx j
or class M̄x j by looking at the different lexicon combinations of pro-

nouns, verbs and adjectives. We searched for particular keywords

related to 12 considered medical conditions, and also for possessive

Table 6: Disclosure probabilities for demographic at-
tributes.

Demographic Disclosure Rate Reference

Attribute P (Zxij = 1) Paper

Age 21.6% [6]

Gender 76.29% [29]

Location 19.3% [22]

Race 68.1% [5]

words such as {‘I’, ‘have’, ‘got’, ‘mine’} to retrieve those posts which

disclose information about medical conditions of the individuals.

Once the candidate sentences have been classified, the final task is

to estimate P (Zxij
+ = 1) as:

P (Zxij
+ = 1) =

|Mx j |

|Sx j |
. (8)

Finally, we assume P (QC = 1|UC = 1) = 1. This assumption

means that, the uniqueness behavior of C is same across both D
and E. Indeed, our intuition also suggests that there should be a

strong correlation between UC and QC . In fact, if we assume the

extreme case where both D and E contains all the individuals in

the universe with all information disclosed, then D and E would be

identical and uniqueness in D would indeed imply uniqueness in E,
i.e., P (QC = 1|UC = 1) = 1. Thus, we argue that, this is a reasonable

assumption given that de-identified data-set D is large enough to

be a representative sample of the overall population. In our case,

the HCUP data set contains 8 million inpatient records which we

believe to be large enough to validate this assumption. However,

due to this assumption, all the results reported in section 6.4 are

the upper-bound estimates of the risk metric. The readers should

note that this assumption does not undermine the potential of

the proposed model in any way and finding reliable estimates for

P (QC = 1|UC = 1) can be one of the interesting future directions.

6.4 Experiment Results
Ideally, we want to quantitatively evaluate the accuracy of the

estimated risk of re-identification using the proposed model, but

this would require ground truth about the true probability of re-

identification. It is unclear how we can possibly create this, thus we

leave this challenge as a future work, but instead would rely more

on qualitative evaluation to show the usefulness of the model and

discuss how the proposed model can be used to perform various

interesting analyses of re-identification risk for the data sets we

experimented with.

We first look at the estimated privacy risk associated with the

(hypothetical) release of a de-identified version of theHCUP data set.

For this we vary n, the number of individuals in the data set, from 0

to 8, 000, 000 and calculate the corresponding re-identification risk,

i.e., r∗D . Figure 2a shows this risk for different social media platforms.

We assume that all considered social media platforms (Table 5)

exhibit the same disclosure behavior (Table 6 and 7), but have



(a) Re-identification Risk for individual external sources (b) Re-identification Risk for combined multiple external sources

Figure 2: Re-identification Risk for different external sources. The x-axis represents total number of participants (n) and y-
axis plots the corresponding risk. As legend, t , i, p, l , and f denote Twitter, Instagram, Pinterest, LinkedIn, and Facebook,
respectively.

different usages (Table 5). Hence, we use the External Knowledge
Model with parameters learned on the Twitter data set for all cases.

Figure 2a shows that as the number of individuals n increases,

so does the risk of re-identifying at least one of them, indicating

that the model behaves reasonably. In addition, we see that the re-

identification risk is higher for more popular social media platforms.

For example, when the data set is composed of 4 million patients’

records, the re-identification risks when using Facebook as external

data source is almost maximal, i.e., 0.9999, whereas it is only 0.35

when using Twitter. This is to be understood relative to Facebook’s

usage which is 58% compare to Twitter’s usage which is only 19%

(Table 5).

We then look at the re-identification risk when an adversary

combines information from multiple social media platforms. The

results are shown in Figure 2b, where t , i , p, l and f stand for

Twitter, Instagram, Pinterest, LinkedIn and Facebook, respectively.

We see that combining two different sources poses a greater risk

of re-identification, which again shows that the model behaves as

we intuitively would expect. Adding additional external knowledge

sources increases the risk further. The latter is maximum when the

adversary uses all five external knowledge sources as background

information for a re-identification attack. It is also interesting to see

that although Twitter, Pinterest, Instagram, and LinkedIn are each

substantially less risky than Facebook, when they are combined,

their risk would be fairly close to the risk of Facebook especially

when the number of individuals considered is large.

To understand further the results, we look at specific attribute

combinations and their roles in the overall risk. First, we focus on

the single attribute disclosure probabilities (of both demographic

and medical-condition attributes) computed using equation 5. Ta-

ble 7 provides the list of attributes sorted by the descending order of

Disclosure-Likelihood. These probabilities and all following results

reported in this paper are computed for the aggregated external

knowledge sources case, i.e., all five social media platforms were

Table 7: Attribute list sorted w.r.t. Disclosure-
Likelihood.

Attribute Disclosure-
Likelihood

Attribute Disclosure-
Likelihood

gender 1.27633e-01 migraine 1.11424e-06

race 1.01003e-01 acne 1.08148e-06

age 1.83503e-02 diabetes 7.32283e-07

location 1.60194e-02 insomnia 5.64419e-07

meningitis 3.95810e-05 poisoning 5.31675e-07

asthma 1.75838e-05 fever 3.73356e-07

ulcer 1.72729e-06 arthritis 1.69598e-07

ache 1.36146e-06 anemia 6.02684e-08

considered. The demographic attributes were found to be more

likely to be disclosed compared to the medical condition attributes.

Among the medical-condition attributes, ‘meningitis’ was found to

be most commonly disclosed disease in the social media, whereas

‘anemia’ was found to be the least common.

We now turn our focus to combination of attributes with high

potential for re-identification. Figure 3 provides some intuition for

this. The x-axis of Figure 3 represents the cardinality of the subset

of attributes considered, and the y-axis shows the corresponding

average D-Uniqueness of the subsets with that length (i.e., the blue

star-markers line). In addition, the figure also shows the average

Disclosure-Likelihood (i.e., the green +-markers line), and the aver-

age probability of Re-identification (i.e., the red triangle-markers

line). To understand the figure, recall that the probability of re-

identification is basically the multiplication of Disclosure-Likelihood
and the D-Uniqueness.

Figure 3 has a straightforward interpretation: as the cardinality

of a particular subset of attributes increase, its D-Uniqueness, i.e.,



the probability to uniquely identify some individual from the data

set will increase. However, at the same time, as the cardinality of

the subset of attributes increases, the probability that that subset

will be disclosed decreases. Thus, there is some optimal cardinality

that has both high D-Uniqueness and high Disclosure-Likelihood,
which in the case of our case-study lies in the range [3, 4] as shown

in Figure 3 .

Figure 3: Relationship between cardinality of a sub-
set of attributes and its D-Uniqueness, Disclosure-
Likelihood, and Re-identification Risk

To verify that the range identified from Figure 3, i.e., cardinalities

[3, 4] is indeed significant, we focus on combination of attributes

(both demographic and medical-condition attributes) with the high-

est probabilities of re-identification. The top 20 such combinations

are shown in Table 8. It can be seen that most combinations have

cardinality in the range [3, 4] and many of them contain mostly

demographic information. The combination found with the highest

probability of re-identification was the combination of all four de-

mographic attributes, i.e., age, location, race and gender. However,

some medical condition attributes like meningitis, asthma, diabetes,

and migraine were found to be quite helpful in conjunction with

the demographic attributes for re-identification.

7 CONCLUSION AND FUTUREWORK
Analysis and mitigation of the re-identification risk from aggrega-

tion of multiple data sets are essential to enable privacy-preserving

big data applications. To this end, we proposed a general probabilis-

tic risk-model to quantify the risk of re-identification with consider-

ation of external public knowledge resources. We introduced three

concepts that are essential for probabilistically quantifying the risk,

i.e., D-Uniqueness, E-Uniqueness, and Disclosure Likelihood and used

them to define a probabilistic measure of risk of re-identification.

The framework enables assessment of the re-identification risk

before releasing a data set and detailed analysis of the impact of

different kinds of public knowledge source on the potential risk,

thus potentially helping mitigate the risk due to releasing a data

set.

Table 8:Top 20 combinations of demographic andmed-
ical condition attributes with high re-identification
probabilities.

Combination probability of

re-identification

[‘age’, ‘location’, ‘race’, ‘gender’] 3.08602e-05

[‘age’, ‘location’, ‘race’] 4.16520e-06

[‘age’, ‘location’, ‘gender’] 6.71205e-07

[‘age’, ‘race’, ‘gender’] 4.34369e-07

[‘age’, ‘race’] 8.93008e-08

[‘age’, ‘location’] 8.87072e-08

[‘location’, ‘race’, ‘gender’] 7.58389e-08

[‘age’, ‘location’, ‘meningitis’, ‘race’, ‘gender’] 3.98472e-08

[‘age’, ‘gender’] 2.96960e-08

[‘age’, ‘asthma’, ‘location’, ‘race’, ‘gender’] 2.48032e-08

[‘age’, ‘location’, ‘meningitis’, ‘race’] 6.66843e-09

[‘location’, ‘race’] 4.10303e-09

[‘age’, ‘asthma’, ‘location’, ‘race’] 3.83848e-09

[‘age’, ‘location’, ‘meningitis’, ‘gender’] 3.82483e-09

[‘age’, ‘location’, ‘race’, ‘gender’, ‘ulcer’] 2.31183e-09

[‘age’, ‘meningitis’, ‘race’, ‘gender’] 1.77845e-09

[‘ache’, ‘age’, ‘location’, ‘race’, ‘gender’] 1.77400e-09

[‘age’, ‘location’, ‘migraine’, ‘race’, ‘gender’] 1.19796e-09

[‘age’, ‘diabetes’, ‘location’, ‘race’, ‘gender’] 1.09382e-09

[‘age’, ‘asthma’, ‘location’, ‘gender’] 1.02967e-09

Using multiple independence assumptions, we also derived a

specific probabilistic risk model (i.e., the Naive Re-identification

Framework (NRF)) that can be estimated based on any relational

data set and relational external knowledge sources for risk assess-

ment and analysis. We further experimented with this model using

a health data set (HCUP data) and multiple social media (Facebook,

Twitter, Instagram, LinkedIn, and Pinterest) to demonstrate that the

proposed risk-model can be used to quantify the risk of releasing

HCUP in association of each social media and perform interest-

ing analysis of factors affecting this risk. The model enabled us to

make the following interesting observations: 1) The popularity of

the social media platform used as the external knowledge source

plays a significant role in a successful re-identification attack and

all social media increase the risk of re-identification with Facebook

posing the highest risk, followed by LinkedIn, Pinterest, Instagram,

and Twitter. In fact, for the medical data set we considered (i.e., the

HCUP data set), it is almost certain that at least one individual will

be re-identified if an adversary uses only Facebook as the external

knowledge source. Thus, the results indicate that such data sets

require more sophisticated sanitization techniques before they can

be publicly released for research purposes. 2) Among the many

attribute values social media users voluntarily “leaked” on social

media, the demographic attributes (especially age, location, race

and gender) pose the greatest risk of re-identification, especially

when the medical conditions (e.g., meningitis, asthma, and ulcer)

are also disclosed in the public forums. Overall, these results show

the great promise of the proposed general framework as well as



the specific probabilistic risk model, and their immediate practical

application in helping assess re-identification risks before releasing

a data set and analyzing security aspects of social media.

Ensuring privacy protection of a released data set when an ad-

versary has access to vast amounts of public information is a very

difficult, yet also very important challenge. The proposed proba-

bilistic framework addressed the practical need for assessing the

potential risk of re-identification before releasing a data set with a

theoretical approach, resulting in a useful framework and specific

probabilistic models that can be applied to perform risk analysis of

any relational data set and help obtain insights about how to de-

crease this risk. Amajor limitation of our work is that we have made

some independence assumptions in order to address the issue of

data sparseness, which has inevitably affected the accuracy of some

of the estimated probabilities. Although some findings (e.g., relative

comparison of different social media) are unlikely affected much by

those assumptions (since those assumptions are orthogonal to the

comparison we have made), the inaccuracy of the estimated proba-

bilities clearly affects the reliability of the estimated risk. Thus in

the future, we must study how we can relax these independence as-

sumptions to obtain more accurate estimate of parameters. Another

limitation of our work is the empirical evaluation. How to appropri-

ately evaluate the proposed model is by itself a difficult challenge

for at least two reasons: 1) Since our target is to quantify the risk

with a probability, it is unclear how we can possibly create any gold

standard for quantitative evaluation (which would require us to

know the true probability of risk). 2) The confidentiality required

by the terms and conditions prescribed in the HCUP Data-User

agreement would not allow us to make any attempt to re-identify

any individual in the data set. How to address those challenges is

also a very important direction for future work. Another interesting

future direction is to use the proposed model to develop a software

tool to enable a data publisher to interactively analyze alternative

configurations of data fields to be released and seek a configuration

that would minimize the risk of re-identification. As we currently

have no tool of this kind, such a tool can be expected to be useful

even though the estimated risks may not be entirely accurate.
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