
SOFSAT: Towards a Set-like Operator based Framework for
Semantic Analysis of Text

Shubhra Kanti Karmaker Santu1, Chase Geigle1, Duncan Ferguson1, William Cope1, Mary
Kalantzis1, Duane Searsmith1, and Chengxiang Zhai1

University of Illinois Urbana-Champaign
{karmake2, geigle1, dcf, billcope, kalantzi, dsearsmi, czhai}@illinois.edu

ABSTRACT
As data reported by humans about our world, text data
play a very important role in all data mining applications,
yet how to develop a general text analysis system to sup-
port all text mining applications is a difficult challenge. In
this position paper, we introduce SOFSAT, a new frame-
work that can support set-like operators for semantic analy-
sis of natural text data with variable text representations. It
includes three basic set-like operators—TextIntersect, Tex-
tUnion, and TextDifference—that are analogous to the cor-
responding set operators intersection, union, and difference,
respectively, which can be applied to any representation of
text data, and different representations can be combined via
transformation functions that map text to and from any rep-
resentation. Just as the set operators can be flexibly com-
bined iteratively to construct arbitrary subsets or supersets
based on some given sets, we show that the correspond-
ing text analysis operators can also be combined flexibly
to support a wide range of analysis tasks that may require
different workflows, thus enabling an application developer
to “program” a text mining application by using SOFSAT
as an application programming language for text analysis.
We discuss instantiations and implementation strategies of
the framework with some specific examples, present ideas
about how the framework can be implemented by exploit-
ing/extending existing techniques, and provide a roadmap
for future research in this new direction.

Keywords
Text Mining, Semantic Analysis, Intelligent Text Analysis,
Semantic Operator for Text

1. INTRODUCTION
Text data broadly include all kinds of data generated by hu-
mans in the form of natural language text, which can exist
in the form of written text data or transcribed text data
based on human speeches. Written text data include all
kinds of information on the Web, such as web pages, news
articles, product reviews, and social media, enterprise text
data, emails, and scientific literature, while transcribed text
data can be produced from many video data and speeches.
Since text data can be regarded as data generated by human
sensors describing the observed world, they can be naturally

combined with data generated from all kinds of physical sen-
sors to provide a more complete view of the observed world
and enable more effective data mining via joint analysis of
text and non-text data [43]. As humans are involved in vir-
tually all “big data” applications, text data are generally
available in all application domains, making them valuable
for applications in all the domains.

The unique value of text data from the perspective of data
mining can be reflected in the two important differences be-
tween human sensors and physical sensors: humans are sub-
jective and far more intelligent than physical sensors. The
inevitable subjectivity means that the text data reported
by humans contain not only the observed (objective) infor-
mation about the world, but also their subjective opinions,
making text data an extremely useful source of data for dis-
covering (and understanding) people’s attitudes, opinions,
and preferences, which is needed in optimizing all kinds of
decisions related to people, ranging from making effective
and acceptable public policies by governments, to providing
personalized tutoring materials to students by teachers, and
to effective advertising of products to people on the Internet
by companies. Human intelligence enables humans to effec-
tively process and digest what has been observed based on
all kinds of background knowledge, and thus the text data
reported by human sensors are not only generally mean-
ingful, but also directly useful as knowledge; in this sense,
even a small amount of text data can also be very useful if
computers can understand the data accurately. For exam-
ple, while analysis of data sent through a computer network
may reveal an abnormal pattern that might suggest the pos-
sibility of a virus spreading on the network, a few explicit
comments about the virus made by system administrators
of the network may directly report a suspected virus or help
confirm a virus.

Unfortunately, text data are expressed in natural languages
which are invented for humans to use and thus not “computer-
friendly,” making it extremely challenging for computers
to understand text data precisely. Indeed, despite great
progress has been made in the natural language processing
(NLP) field, computers are still far from being able to ac-
curately understand unrestricted natural language; as such,
how to analyze and mine big text data effectively and ef-
ficiently is a pressing difficult challenge. Thus, involving
humans in a loop of interactive text mining is essential,
but how can we develop a general system that can support
users in potentially many different text mining applications?
The answer to this question at least partially depends on



whether/how we can define a “text mining language” that
can allow a user to flexibly specify potentially many differ-
ent workflows as needed in different applications in a similar
way to how users use an application language such as SQL
for querying a database in many different ways. We address
this question by drawing insights from set theory.

Set theory provides a theoretical foundation for construct-
ing (arbitrary) new sets from given sets by applying different
operators. For example, the intersection operation (denoted
by ∩) takes two sets as input and returns the set of objects
present in both sets, while the union operation (denoted by
∪) takes two sets and returns the set of all objects present
in either (or both) of the two sets. The difference operator
(denoted by −) takes two sets and returns the set of unique
objects present in the first set that are not also present in
the second set. Because these operators have compatible
data types (i.e., we can apply any operator to the results
generated from applying any other operators), we can flex-
ibly combine them to define more complex operations on
potentially a large number of sets. Thus even with just
these three basic operators, we can already support poten-
tially infinitely many different complex operations. In other
words, we can “program” with these individual operators to
support complex set construction tasks.

Can we define similar operators for semantic analysis of text
data? That is, can we define a number of set-like operators
that are “sufficient” for supporting potentially many differ-
ent text analyses? If we can do that, we would be able
to define a text analysis programming language based on a
small number of semantic operators on text that users can
then use to flexibly program potentially infinitely many spe-
cific workflows for text analysis application tasks. A general
text analysis system can thus be implemented to support
users in performing such text analysis tasks.

Such a system would be extremely useful as text data play
an increasingly important role in all big data application do-
mains. As people communicate in natural language all the
time, text data are produced constantly wherever people are
present, which means that text data play an important role
in all domains of data mining applications. However, as
mentioned before, due to the difficulty in natural language
understanding by computers, how to effectively mine and
analyze text data remains a significant open challenge and
involving humans in the loop is generally required both to
leverage human intelligence in an analysis task and to allow
humans to control the analysis flexibly as needed. Given
that the application needs vary significantly across differ-
ent domains, an important question is thus: can we design
a general system that can support many different applica-
tions?

The analysis of set operators above motivates us to address
this question by designing a programming language for text
analysis; just as a general programming language such as
C++ or Java is flexible to allow us to write infinitely many
different programs each solving a different problem, our goal
here is to design a special programming language that can
be used to write infinitely many different text analysis pro-
grams each solving a different text analysis task. Specifi-
cally, we propose SOFSAT, a general text analysis frame-
work that can support set-like operators for comparative
analysis of natural language text data. We introduce three
basic set-like operators in this framework—TextIntersect,
TextUnion, and TextDifference—which are the natural text

analogues of the original set operators they are named after.
SOFSAT provides a single unified framework, which, once
implemented, would be able to support an infinite number
of different applications by combining the three individual
basic operators. As in the case of a general programming
language, frequently used sequences of operators in SOFSAT
can also be treated as a “compound operator” which can
be made available to users through a library. Furthermore,
SOFSAT can be potentially extended to include additional
user-defined operators as needed.

To see why SOFSAT can be potentially useful for many
applications, it is instructive to consider the following ex-
amples.

1. Review Analysis: Consider the peer review practice
widely adopted in assessment of complex assignments,
especially in online education systems. To help an in-
structor or student understand the common comments
made by all the reviewers of a student work, we only
need to apply the TextIntersection operators to all the
reviews. The unique perspective of Reviewer R can be
obtained by applying a TextDifference operator to the
result of TextUnion of all the other reivews. Clearly
similar analysis can also be done for reviews of confer-
ence or journal submissions as well as grant proposal
submissions.

2. Bias Analysis of News: Consider the task of an-
alyzing potential bias in news reporting. Letting A
and B be two news articles reporting the same event
from two news agencies, A−B or B−A would be use-
ful for understanding any potential bias in each arti-
cle, whereas comparing the articles reporting the same
event in different time periods would help understand
the evolution of the event.

3. Knowledge Discovery from Literature: SOFSAT
can also be used to mine biomedical literature to po-
tentially reveal interesting hypotheses. For example,
the well-known example of discovering the hypothe-
sis of fish oil for treating Raynaud’s syndrome using
pure text mining [39] can be easily supported by the
proposed set-like operators. Specifically, we can first
retrieve relevant text information from literature ar-
ticles about a supplement such as “fish oil” (denote
this text as X), and then retrieve relevant information
about Raynaud’s syndrome (denoted by Y ). Once we
have X and Y , we can apply TextIntersection to see
what text information is shared by X and Y and assess
whether there is any interesting connection between
“fish oil” and Raynaud’s syndrome.

How exactly should the three text analysis operators be de-
signed and implemented? What architecture should be used
to implement a general system based on SOFSAT? How can
we use the framework to solve some representative real-world
applications? The purpose of this position paper is to intro-
duce the SOFSAT framework and take an initial step toward
addressing such general questions about text analysis. We
hope this will facilitate the actual design of a programming
language for text analysis based on set-like operators and
actual implementation of a compiler or interpreter of the
language, and eventually a deployment of the language and
system to allow many text applications to be easily devel-
oped across diverse application domains.



Specifically, in the rest of the paper, we will first introduce
and discuss the SOFSAT programming language followed by
some representative application scenarios of the language in
section 2. We then discuss the overall architecture of the
framework and instantiation guidelines in section 3. Next,
in section 4, we provide a roadmap for future research in
this direction. Finally, we briefly discuss related work in
section 5 and conclude with section 6.

2. SOFSAT: A TEXT ANALYSIS LANGUAGE
We first present SOFSAT as a general application program-
ming language for supporting a variety of text analysis ap-
plications. Our main motivation is to have such a language
so that we can have a general text mining system for sup-
porting a wide range of text analysis applications by allow-
ing application developers and users to program different
workflows needed for different applications using the same
programming language. The benefit is that once we have
such a general system, it can be deployed immediately in
all application domains to support many different text min-
ing tasks, accelerating applications of text mining. In some
sense, the benefit would be similar to that of SQL language
for database applications. Similar to SQL, we also want
our text analysis language to be declarative so that we can
potentially separate the optimization of an implementation
from the application semantics. We now present the SOF-
SAT language in more detail.

2.1 Definition
As a programming language, SOFSAT is conceptually sim-
ple as it is completely analogous to the set operators with
three basic operators for text objects: TextIntersect, TextU-
nion, and TextDifference which can be combined with each
other flexibly provided that the types of the data that those
operators are applied to are compatible. However, text anal-
ysis is a sophisticated task and different tasks may require a
different way to represent text data. Thus, all the operators
must also be applicable to any preferred representation of
text data.

For example, the simplest representation is to use set theory
directly by assuming the “objects” are keywords extracted
from pieces of text, and we can then perform set operations
on these sets of keywords. Such a simple representation has
the advantage of being efficient and is often also sufficient
for simple text analysis tasks, notably topic-related analysis.

However, such a representation is deficient for a number of
reasons. First, it assumes that each word is independent of
the others, but in natural languages, many words are seman-
tically related, and it is desirable to capture those semantic
relations. Second, it fails to capture the relative ordering of
words in the text which may also be important as the order
may affect the meaning (e.g., “ John gave a book to Mary”
is very different from “Mary gave John a book”). Finally,
it also ignores duplicated words—a word is ether present in
the set or absent, as there is no model for “degree of mem-
bership.”1 However, a word occurring very frequently in an
article may be regarded as better representing the content
of the article than a word that occurred just once.

To improve over such a simple method, it is more desirable
to define the operators at the level of appropriate seman-

1While multi-sets can model duplicated objects, they still
assume object independence and fail to preserve relative or-
dering.

tic representation of text data, and implement them based
on various representation transformation functions. Thus,
a general framework must accommodate different ways to
represent text data.

A sophisticated text analysis task also often requires inte-
gration of analysis using multiple representations. To ac-
commodate this need, SOFSAT must also allow operators
working on different representations to be combined with
each other. We solve this problem by introducing two ad-
ditional operators (we call them transformation functions)
to map natural language text to and from a representation,
respectively. One of them is called TextInterpretation and
would map text to a given representation; the other is called
TextGeneration and would map a representation (back) to
text. With these two additional operators, we can map
one representation to another by going through text as a
“bridge”, thus enabling operators defined on different rep-
resentations to be combined with each other.

The TextInterpretation and TextGeneration operators also
enable derivation of different representations from the same
text data as needed as well as facilitates interpretation of
any computed intermediate representation by users by trans-
forming an intermediate representation to text.

The following summarizes the key components in the SOF-
SAT text analysis language:

Representation of Text: We assume that there is a finite
set of text representations this framework can handle and
we denote this set by R = {r1, r2, . . . , rn} where n is the
cardinality of set R and r ∈ R. For more details on different
representations of text, see section 3.2.1.

TextInterpretation operator: The framework provides a
TextInterpretation operator, also called representation trans-
formation function ψi, corresponding to each representation
ri where ψi transforms a natural language text into the rep-
resentation ri. Thus, the set of representation transformers
is Ψ = {ψ1, ψ2, . . . , ψn} and there is a one-to-one correspon-
dence between R and Ψ.

TextGeneration operator: SOFSAT also provides a TextGen-
eration operator Ψ̂ = {ψ̂1, ψ̂2, . . . , ψ̂n}, which is essentially
a set of reverse transformation functions with a one-to-one
correspondence between the elements of Ψ and Ψ̂. While a
ψ function transforms natural language into some internal
representation r ∈ R, a ψ̂ function transforms the internal
representation back into the natural language form.

Set-Like Operators: Finally and most importantly, the
framework provides a finite number of set-like operators that
can be applied to conduct comparative analysis of multi-
ple pieces of text generally represented using a particular
representation from the representation set R. The opera-
tors include set-like operations such as TextIntersect, Tex-
tUnion, and TextDifference of natural language text. Note
that the specific implementations of these operators will vary
based on the particular representation of the text (see sec-
tion 3.2.2).

As in set theory, once implemented in an interactive analysis
system, such operators can be combined flexibly by users to
perform potentially very complex semantic analysis tasks as
we will further discuss next.



2.2 Cascading Multiple Operations
One beneficial feature of SOFSAT language is that multiple
text segments as well as operators can be processed in a
cascading fashion. Figure 1 shows such an example. Here,
operator ξ1 is applied on T1 and T2 represented in r1 form
to generate T3 = T1 ξ1 T2. On the successive iteration, T3 is
passed along with a new text T4 using representation r2 to
generate T5 = T3 ξ2 T4. This kind of cascading operation can
go on infinitely and represent complex semantic operations
on multiple text segments.

Figure 1: An example of cascading multiple operators. Here,
we obtain a new text object T3 by applying ξ1 to T1 and T2.
This is then fed as the first input to another set-like operator
ξ2 along with T4 to generate T5, which is again used with a
third operator ξ3 with T6 to finally produce T7.

2.3 Examples of Applications
Even with just a few operators, SOFSAT can be regarded
as providing a simple programming language for writing an
application program for text analysis tasks since there are in-
finite possibilities of iteratively combining operators to pro-
cess any given set of text data sets. Moreover, frequently
used sequences of operators can be stored as subroutines,
which can be later easily reused by other users. In an in-
teractive analysis environment, a user can wait to see the
intermediate results (which can be stored in a workspace)
and then decide which operator to use next, offering maxi-
mum flexibility for customizing the workflow as needed. The
generality of SOFSAT allows it to support many different
applications; below we very briefly present three different
applications as specific examples.

Education: Peer assessment of student papers is now com-
monly used in MOOCs and other educational settings [33;
37]. In such systems, peers submit their papers to review-
ers (also peers) who generate individual reviews for the pa-
per that include not only scores, but also written comments
connected with the criteria in the grading rubric. Concerns
remain regarding the variability and thus reliability of such
reviews [13], but SOFSAT can help by revealing the common
concerns raised by multiple reviewers using TextIntersection
(of multiple reviews). TextDifference can also be useful for
revealing how a student has revised an essay by comparing
the original version with the revised one.

Next, we demonstrate another useful application of the dif-
ference operation: let us assume there is a course being
taught at a university where the instructor posts an assign-
ment for the students which requires answer in natural lan-
guage form. Also assume that the students can submit two
different versions of their answer, namely, V1 and V2. How-
ever, after they submit V1, the instructor give them some
feedback and based on the feedback received, they submit

V2. Now, from the instructors perspective, it is interesting
to see what changes were made in V2 with respect to V1.
A deeper thinking would also reveal that V2 − V1 would al-
low us to see the additions made in version V2, while V1−V2

would give us the deletions made. Thus, (V2−V1)∪(V1−V2)
would represent the total changes made in version V2 with
respect to V1. Thus, by applying these operators, the in-
structor can quickly get a sense about the changes made in
V2 that would help him/her to grade V2 more efficiently.

Now, lets look at a more involved case with a correspond-
ing complex workflow. Suppose the instructor, instead of
analyzing the additions made in the second version by a sin-
gle student, wants to analyze the common additions made
in version V2 by a group of n students. In the language of
SOFSAT, this can be represented as:

(V 1
2 − V 1

1 ) ∩ (V 2
2 − V 2

1 ) ∩ ... ∩ (V n
2 − V n

1 )

In addition to that, suppose the instructor wants to see if
there are new patterns in the common additions made by
students in the current semester compared to the students
in the previous semester. To express this in the language of
SOFSAT, let us denote the student submissions in the cur-
rent semester by V and student submissions in the previous
semester by W . Then, common additions made by students
in the current semester that were not made by the students
in the previous semester can be expressed as follows:{

(V 1
2 − V 1

1 ) ∩ (V 2
2 − V 2

1 ) ∩ ... ∩ (V n
2 − V n

1 )
}

−
{

(W 1
2 −W 1

1 ) ∩ (W 2
2 −W 2

1 ) ∩ ... ∩ (Wn
2 −Wn

1 )
}

Now, let us look at an another complex case. Suppose that a
research paper has been reviewed by four different reviewers
and let the individual reviews (in text) be represented by
A, B, C and D, respectively, and our goal is to generate
a meta-review by combining the four reviews in some way.
This is challenging for a few reasons: (1) it is possible that
A ∩ B ∩ C ∩ D is an empty set, i.e., there is nothing that
is common across all four reviews, and (2) there are often
many comments mentioned by a single reviewer that are
not relevant to incorporate into a meta-review. Thus, one
reasonable solution is to incorporate all the concerns raised
by at least two reviewers. SOFSAT can achieve this goal
through the following simple operation:

(A∩B)∪ (B ∩C)∪ (C ∩D)∪ (A∩D)∪ (B ∩D)∪ (A∩C)

Thus, in general, set-like operators in SOFSAT would allow
us to do intelligent processing of text data which will enable
new application tasks as well as enhance the existing appli-
cation tasks.

Health Informatics: SOFSAT can be applied to compare
clinical notes in patient records so as to reveal the changes in
a patient’s diseases condition or perform comparative analy-
sis of patients with the same diagnosis. For example, TextD-
ifference can be applied to the clinical notes from two con-
secutive visits of a patient to assess the effectiveness of the
treatment provided to the patient in between the two vis-
its. TextIntersection can then be further applied to the re-
sults of TextDifference from all the patients provided with
the same treatment to understand the overall impact of the
treatment. For an example, assume that four patients A, B,
C, and D have the same medical condition and have gone
through the same treatment plan. Also, let Ai denote the



clinical note of patient A before the treatment started and
Af be the clinical note after the treatment was provided.
Similarly, Bi, Ci, Di and Bf , Cf , Df denote the before and
after treatment clinical notes respectively for patient B, C
and D. Now, to understand the effectiveness of the provided
treatment, the following function can be invoked using the
SOFSAT framework:

(Ai −Af ) ∩ (Bi −Bf ) ∩ (Ci − Cf ) ∩ (Di −Df )

Now, further assume that all the patients took a particular
medicine during this treatment period. The doctors might
be interested to know if that particular medicine has some
common side-effects on its patients. These side-effects can
easily be extracted using the following SOFSAT expression:

(Af −Ai) ∩ (Bf −Bi) ∩ (Cf − Ci) ∩ (Df −Di)

Note that, effects and side-effects of treatment are essentially
the removal of existing symptoms and addition of new symp-
toms after going through the treatment plan. Thus, SOF-
SAT would be very useful identify these removals and addi-
tions to understand the effects and side-effects of a treatment
plan.

News Bias Analysis: Assume that there are two news
agencies reporting the same event, and that each news agency
has some political bias which is reflected to some extent
within the articles they write. If A and B are the two news
articles reporting the same event from two different news
agencies, then a TextIntersection operation A ∩ B would
provide all the common statements which are reported by
both A and B (which are likely revealing facts about the
event); in other words, A∩B is expected to surface the facts
about the event they are reporting. On the other hand, the
TextDifference operator A − B would reveal any bias of A
in reporting the event, and B − A the bias of B. Finally,
A∪B can provide a summary of all the statements made by
either of A and/or B.

Let us take a look at a more complicated case. Assume that
we now have three news agencies instead of two. Again, they
are reporting about the same event and the corresponding
text is denoted by A, B, and C, respectively. To find out
the bias of each agency in reporting the event, it is necessary
to find out all unique statements reported by each agency
that were not reported by any of the other two agencies.
Thus, the bias of A can be found by the SOFSAT expression:
A− (B ∪C). Finally, to find out all such biased statements
from any of the reports, we can use the following expression:

{A− (B ∪ C)} ∪ {B − (A ∪ C)} ∪ {C − (A ∪B)}

In summary, SOFSAT can support many interactive text
analysis applications. Specially, if a sequence of operators
are often combined by users, they can form a “subroutine” to
allow future users to call such a subroutine without using the
tedious low-level operators every time. This demonstrates
the potential of SOFSAT for programming with these oper-
ators that will simplify accomplishing very complex tasks.

3. IMPLEMENTATION OF SOFSAT
The proposed SOFSAT language can be potentially imple-
mented in many different ways. In this section, we discuss

some possibilities, highlighting the need for a combination
of a Backend and a Frontend Interactive Module.

3.1 Architecture
In order to fully leverage existing research results on text
representation and transformation, we believe that the SOF-
SAT system should have a Backend (offline) module and an
Interactive (online) module as illustrated in Figure 2. Such
a design is based on the following observations:

1. Sparsity: One particular issue with text data is the
sparsity associated with it, especially in case of short
text. As the primary goal of SOFSAT is to enable
non-experts to explore text pieces of arbitrary lengths,
SOFSAT must be able to deal with short text fre-
quently. One way to deal with the sparsity challenge,
especially in the case of short text, is to exploit pub-
licly available large text corpora to extract compli-
cated semantic relations among words and augment
these relations along with the input text data to re-
duce the sparsity problem. However, extracting com-
plicated semantic relations from large text corpora is
computationally expensive and time consuming, mak-
ing it unsuitable for interactive analysis of text data.
Thus, it is reasonable to split SOFSAT into two mod-
ules, namely, Backend (offline) module and Interactive
(online) module where the Backend module would pre-
compute the semantic relations of different words be-
forehand in an offline fashion and then, at query time,
the Interactive module will augment the input text
data with semantic relations learned by the Backend
module to create a more dense representation of the
input text and further apply the set-like operators on
that dense representation.

2. Background Knowledge: Another issue associated
with text data is the background knowledge it assumes
on the “consumer” of the text data. Background knowl-
edge consists of knowledge about different things such
as entities, locations, historical events, cultural prac-
tice that are not explicitly articulated in the text itself.
For example, any video-game lover reading a text ar-
ticle containing the word “Xbox” would immediately
realize that it is a gaming device manufactured by Mi-
crosoft, although the word “Microsoft” may not be
present in the actual text. Similarly, any soccer lover
reading a text article containing the bigram “El Clas-
sico” would immediately realize that its a soccer game
between two popular clubs, i.e., Barcelona and Real
Madrid. However, it can be the case that none of the
words “Barcelona”, “Real Madrid”, or “Soccer” are
actually present in the text. The writer of the article
in this case assumes that the reader knows what “El
Classico” is and how it is related to “Barcelona”, “Real
Madrid” or “Soccer”. This is a common phenomenon
with every text document that is written by a human
reporter targeting a particular reader community as in
general, in order to increase the efficiency of communi-
cation. Writers tend to omit much of the background
knowledge that they can assume that the consumer of
the text data already possesses.

Thus in order to understand text data, it is also de-
sirable for computers to incorporate this background



knowledge. Publicly available large text corpora can
again help in this case by allowing computers to ex-
tract useful information and build a knowledge graph
that can allow the computer to more intelligently make
sense of human written text articles. The Backend (of-
fline) module can again take the responsibility of pre-
computing such knowledge graphs and provide them to
the Interactive (online) module as needed. The gen-
eral justification for separating a backend from a front-
end is to enable both complex processing of text data
needed for incorporating background knowledge and
semantic interpretation as well as efficient interactive
analysis needed for many text mining applications.

We now describe how the two synergistic modules (i.e., In-
teractive Module and the Backend Module) work in more
detail.

3.1.1 Interactive Module
The Interactive Module is the primary module where users
interact with the framework. It takes one or more natural
language text(s) as input and applies different set-like opera-
tors. Without loss of generality, assume that the Interactive
Module takes as input two pieces of natural language text
of arbitrary lengths. Let us denote these two pieces of text
by T1 and T2. The Interactive Module also takes two other
inputs: the representation of the text r and the intended set-
like operator ξ. Now, based on the input r, the framework
selects the right representation transformation function (de-
noted by ψr) and applies ψr on both input texts T1 and
T2 and outputs the local representation L(T1) and L(T2),
respectively, where, ψr(T1) = L(T1) and ψr(T1) = L(T2).
We call these the local representations to distinguish them
from the global representations which we discuss in the next
section. The next task of the Interactive Module is to take
these two local representations L(T1) and L(T2) and apply
the operator ξ to produce L(T1 ξ T2), which is the local rep-
resentation of T1 ξ T2. Finally, to get back the natural
language text, the Interactive Module applies the reverse
transformation function ψ̂r on the result L(T1 ξ T2) which
yields our desired T1 ξ T2.

3.1.2 Backend Module
While the Interactive Module can apply the set-like oper-
ators and generate the intended results by itself, it suffers
from the sparsity problem associated with any natural lan-
guage text, especially short text segments. For example,
two text segments T1 and T2 may represent two indepen-
dent descriptions of the same event, but there may be very
few exactly overlapping words between T1 and T2. However,
at the semantic level, they might be very similar. To cap-
ture such semantic relations between words, which is very
hard to learn from two small pieces of text, we need to ex-
ploit large available text corpora to learn these semantic re-
lations from global co-occurrences of words. Training with
large text corpora requires longer time, demanding a Back-
end Module that can pre-compute different global represen-
tations of words based on the co-occurrences within large
training corpora. These global representations can then be
directly applied on top of the local representations created
by the Interactive Module to address the sparsity problem.
Note that both the Interactive and Backend Modules offer
the same set of representations R = {r1, r2, . . . , rn}. How-
ever, the Backend Module learns these representations from

Figure 2: A visual overview of the SOFSAT framework. The
backend module (top) consists of a set of text transformation
functions ψ1:n and their corresponding global text represen-
tations G1:n. At query time, the interactive module (bot-
tom) takes a query in the form of two text objects (T1 and
T2), a desired representation r, and set-like operator ξ, and
uses the transformation corresponding to r to obtain a local
text representation, which is then used to obtain a result
for the operator ξ in the local text representation, which is
finally transformed back into natural language text via the
inverse text transformation function (The TextGeneration

operator), ψ̂r.

the global corpus (we represent it by Gr), while the Inter-
active Module computes them based on the input text data
(we represent it by L(T )).

3.2 Implementation of Operators
Once the architecture is fixed, the next task is to implement
various operators, which we discuss in this section. Our
discussion is brief as our goal is to lay out the possibilities
rather than going in depth in any specific direction, which
would be out of the scope for this position paper. We hope
the ideas we discussed here are sufficiently informative to
stimulate more research work in this direction.

3.2.1 Representation of Text
There is a large body of literature surrounding text represen-
tations [17; 16]. Bag-of-words is the simplest representation,
where a document is represented by the frequency counts of
its words. However, there are a wide variety of other rep-
resentations including the Vector Space Model [35], Binary
Representation [26], Ontology Based Representations [22],
N-Gram Models [9], Topic Models [42; 8], Graphical Mod-
els [11], Word Embedding Vectors [30], Paragraph Vectors [14]
etc. Different representations may be advantageous for dif-
ferent kinds of analysis applications. The benefit of using
our proposed framework is that the user can select any rep-
resentation for text according to their choice and can also
use different representations at different stages of the cas-
cade (Figure 1).

3.2.2 Implementing Set-Like Operators
The implementation of set-like operators can in general be
categorized into two different types: retrieval based and gen-
eration based. The retrieval based implementations of an
operator basically selects/retrieves relevant words/sentences
from the input text to construct the output text. The Vec-
tor Space Model [35], N-Gram Language Model [9], Topic



Model [42; 8], and Graphical Model [11] representations can
be handy for retrieval based implementations.

Generation-based implementations would automatically gen-
erate text according to the operator being applied, thus they
are not restricted to the keywords provided inside the input
text. Sequence generation models like recurrent neural net-
works (LSTMs [20]), Hidden Markov Models [34], etc. can
be exploited for generation based implementations. Finally,
a hybrid implementation is also possible that combines both
retrieval-based and generation-based implementations.

In connection to the existing works related to this field, the
TextUnion operation is similar to the idea of sentence fu-
sion, which has been vastly studied in the literature [5; 6;
15; 28]. The TextIntersection operation can be thought of a
special case of sentence fusion, where output must only con-
tain the information present in all input texts [40]. Levy et
al. modeled retrieval based Sentence Intersection via Subtree
Entailment [24]. All these ideas can contribute to the imple-
mentation of the set-like operators and by allowing flexible
combination of these operators, SOFSAT provides a general
framework which would be a very powerful interactive text
mining tool.

4. A ROADMAP FOR FUTURE WORK
The SOFSAT framework opens up many interesting new di-
rections for future research, which we discuss in this section.

1. Full specification of the SOFSAT text analy-
sis language: The first direction is to study how
to define an appropriate SOFSAT text analysis lan-
guage, which can then be the basis for implementing a
system to support the analysis functions provided by
the language. While the three basic operators are the
core functions for text analysis, in order to fully sup-
port the workflow of a text analysis application, the
SOFSAT text analysis language must also be able to
support operations such as how to load the text data
from disks into the system, how to store intermediate
analysis results, and how to save any interesting anal-
ysis results to the disks. Of particular importance is
the support of workflow management so that a user
can keep track of any intermediate results and further
combine results as needed. We thus envision that the
SOFSAT language would need to support variables of
different types corresponding to different ways to rep-
resent text data. For example, raw text representation
may be one type, bag-of-words representation may be
another, while topic-based representation can be yet
another type. The language should allow for exten-
sion of data types so as to accommodate new ways to
represent text data. The variables can then be used to
hold intermediate results generated from applying var-
ious operators. Naturally, some basic input and out-
put operators should also be supported. Furthermore,
subroutines can be defined so that frequently used se-
quences of operators can be captured as a function;
once a function is defined, it can be called as needed to
invoke a whole sequence of operations. Existing knowl-
edge about how to design a programming language can
be leveraged to design the SOFSAT language. It is de-
sirable to first design a very basic SOFSAT language
that can support three set-like operators with a basic
text representation such as bag-of-words representa-

tion, but would otherwise be as “small” as possible.
Such a basic SOFSAT language would minimize the
amount of effort needed to evaluate the promise of the
overall idea of using a fixed set of operators to support
potentially many different text analysis applications.

2. Implementation of a basic version of SOFSAT:
Once a basic SOFSAT language is specified, the next
task is to implement a system to support such a ba-
sic language. Given the unpredictable nature of the
workflow of text analysis applications, we may initially
implement an “interpreter” system that can interac-
tively support a user in text analysis where the system
would execute a command given by the user expressed
in SOFSAT language. This allows a user to see what
the results look like from some previous steps of analy-
sis before deciding what to do next, thus providing the
needed flexibility to adjust the workflow dynamically.
The implementation involves implementing those three
basic operators using appropriate text representations.
A very first version of the SOFSAT system can be
based on a simple, yet powerful representation, for ex-
ample, the bag-of-words representation.

3. Evaluate SOFSAT with multiple applications:
Once a basic SOFSAT system is implemented, we can
use the system to evaluate the general idea of the SOF-
SAT framework – allowing users to “program” text
analysis applications by using the three set-like text
processing operators. Besides the several specific ap-
plication scenarios discussed earlier in this paper, it
can also be used for many other applications. The
SOFSAT system can be made open source to allow
many users to test it with many real world text analy-
sis applications. The feedback from those users would
be extremely useful for further improving the basic
system; in particular, it would inform the design of
future versions of the language where advanced oper-
ators may be added. Without application feedback,
however, it may be unclear what kind of advanced op-
erators are most useful.

4. Implementation of advanced operators: Based
on the feedback from testing the basic SOFSAT with
many applications, we can further design and imple-
ment potentially many advanced operators, mostly cor-
responding to more advanced text representation than
the bag-of-words representation. The implementations
of those advanced operators will widely vary case by
case based on the specific representations and technical
details of methods. Each operator may demand a sep-
arate investigation since it may raise a novel challenge
associated with performing a certain kind of seman-
tic analysis of text data. With iterative testing and
improvement, the eventual goal would be to material-
ize SOFSAT with a rich set of set-like operators that
would support a wide variety of text representations,
which can then be released as a general tool that can
be used in many different application domains to sup-
port semantic analysis of text data.

5. Optimization of SOFSAT system: Finally, since
SOFSAT is a declarative language, it has an impor-
tant advantage in optimizing the SOFSAT system as
the application logic and the implementation detail



can be separated. This is similar to the benefit of
a relational data model that enables the separation of
database query semantics from the actual execution
of a database query. For example, if the system can
see a whole sequence of operators, it may attempt to
optimize the execution of those operators so as to max-
imize the efficiency without compromising the quality
of analysis results. For example, in the case of com-
mutable operators, intersection operators may be ex-
ecuted first to reduce the size of the candidate text
objects in early stage so as to make it more efficient to
further process the text objects using other operators
later. Existing work on database query optimization
can provide much insight about how to optimize SOF-
SAT system.

5. RELATED WORK
There has been so much work done on text mining and an-
alytics that even a complete summary of the major lines
of research goes beyond the scope of this paper; the refer-
ence [3] provides a comprehensive review of most of the re-
search work in this area. From practical viewpoints, many
text mining toolkits are available, including but not limited
to Lucene [1], MeTA [27], NLTK [7] etc. To the best of our
knowledge, this paper is the first to propose a formal gen-
eral framework for potentially designing a programming lan-
guage and implementing a system to support flexibly many
different text analysis applications using a finite number of
basic operators. In some way, those operators resemble the
operators supported by a declarative query language for a
database (like SQL [10]), making our work related to the
Relational Data Model [12]. As the Relational Data Model
provides a common foundation for database querying tasks,
SOFSAT also provides a common foundation for many text
analysis tasks.

Measuring the semantic similarities among words has long
been a popular research topic among the NLP community [25;
23; 36; 4; 29; 19; 32]. Recently, researchers have also fo-
cused on how the word level similarities can be extended to
sentence level similarity measures [38; 41; 2; 31; 18]. How-
ever, what is missing is a general framework or tool that can
exploit these semantic relations to support intelligent text
processing and comparison. This is the goal of our proposed
SOFSAT framework.

Many powerful general text analysis algorithms have been
proposed, notably those based on probabilistic topic mod-
els [21; 8]. They can be used to discover topics from text
data and analyze variations of topics. These algorithms can
be used as a basis for representing text data and thus can
be potentially incorporated into SOFSAT as a way to pro-
vide an alternative representation of text, which further en-
ables incorporation of set-like operators defined on such an
alternative representation. Topic models have also been pro-
posed for comparative analysis of text data; SOFSAT pro-
vides an alternative way of doing similar analysis with much
more flexibility. However, it is possible that some of those
customized models for comparative analysis may be more
effective for specific analysis tasks than the general SOF-
SAT. Such a tradeoff between generality and effectiveness
for a specific task is inevitable, but it is generally infeasi-
ble to enumerate all the different kinds of analysis tasks to
develop a customized algorithm, and a main benefit of a

general framework such as SOFSAT is its applicability to
a wide range of applications, enabling many applications to
be developed using a single framework easily. As we identify
a specific kind of application, we may further develop more
effective, customized analysis algorithms for that particular
kind of application. In this sense, the general framework
is complementary with those specific advanced algorithms.
They can also be potentially combined in a hybrid system.

6. CONCLUSIONS
In this paper, we proposed a new general framework (SOF-
SAT) with set-like operators that can potentially support a
wide range of text analysis applications by allowing for flex-
ible combination of multiple operators to iteratively analyze
arbitrary text data sets. We presented the general frame-
work, discussed different ways to instantiate the framework,
proposed an architecture for implementing an interactive
text analysis system based on SOFSAT, and discussed a
few specific applications. We laid out a roadmap for future
work and hope that this position paper would stimulate re-
search in this novel direction so as to accelerate widespread
applications of text data mining.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the Na-
tional Science Foundation under grant: “Assessing ‘Com-
plex Epistemic Performance’ in Online Learning Environ-
ments” (Award 1629161).

8. REFERENCES

[1] Apache lucene. https://lucene.apache.org/. Accessed:
2018-05-14.

[2] P. Achananuparp, X. Hu, and X. Shen. The evaluation
of sentence similarity measures. In International Con-
ference on data warehousing and knowledge discovery,
pages 305–316. Springer, 2008.

[3] C. C. Aggarwal and C. Zhai. Mining text data. Springer
Science & Business Media, 2012.

[4] A. D. Baddeley. Short-term memory for word sequences
as a function of acoustic, semantic and formal sim-
ilarity. Quarterly journal of experimental psychology,
18(4):362–365, 1966.

[5] R. Barzilay and K. R. Mckeown. Information Fusion
for Multidocument Summerization: Paraphrasing and
Generation. PhD thesis, Columbia University, 2003.

[6] R. Barzilay and K. R. McKeown. Sentence fusion for
multidocument news summarization. Computational
Linguistics, 31(3):297–328, 2005.

[7] S. Bird and E. Loper. Nltk: the natural language
toolkit. In Proceedings of the ACL 2004 on Interactive
poster and demonstration sessions, page 31. Association
for Computational Linguistics, 2004.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirich-
let allocation. Journal of machine Learning research,
3(Jan):993–1022, 2003.



[9] W. Cavnar. Using an n-gram-based document represen-
tation with a vector processing retrieval model. NIST
SPECIAL PUBLICATION SP, pages 269–269, 1995.

[10] D. D. Chamberlin and R. F. Boyce. Sequel: A struc-
tured english query language. In Proceedings of the 1974
ACM SIGFIDET (now SIGMOD) workshop on Data
description, access and control, pages 249–264. ACM,
1974.

[11] B. Choudhary and P. Bhattacharyya. Text clustering
using universal networking language representation. In
Proceedings of Eleventh International World Wide Web
Conference, 2002.

[12] E. F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377–
387, 1970.

[13] B. Cope, M. Kalantzis, S. McCarthey, C. Vojak, and
S. Kline. Technology-mediated writing assessments:
Principles and processes. Computers and Composition,
28(2):79–96, 2011.

[14] A. M. Dai, C. Olah, and Q. V. Le. Document
embedding with paragraph vectors. arXiv preprint
arXiv:1507.07998, 2015.

[15] K. Filippova and M. Strube. Sentence fusion via depen-
dency graph compression. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 177–185. Association for Computational
Linguistics, 2008.

[16] C. Geigle, Q. Mei, and C. Zhai. Feature engineering
for text data. In G. Dong and H. Liu, editors, Feature
Engineering for Machine Learning and Data Analytics,
Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series, pages 15–45. CRC Press, 2018.

[17] B. S. Harish, D. S. Guru, and S. Manjunath. Repre-
sentation and classification of text documents: A brief
review. IJCA, Special Issue on RTIPPR (2), pages 110–
119, 2010.

[18] H. He, K. Gimpel, and J. Lin. Multi-perspective sen-
tence similarity modeling with convolutional neural net-
works. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages
1576–1586, 2015.

[19] H. He and J. Lin. Pairwise word interaction modeling
with deep neural networks for semantic similarity mea-
surement. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 937–948, 2016.

[20] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[21] T. Hofmann. Probabilistic latent semantic indexing. In
ACM SIGIR Forum, volume 51, pages 211–218. ACM,
2017.

[22] A. Hotho, A. Maedche, and S. Staab. Ontology-based
text document clustering. KI, 16(4):48–54, 2002.

[23] B. Lemaire and G. Denhiere. Effects of high-order co-
occurrences on word semantic similarity. Current psy-
chology letters. Behaviour, brain & cognition, (18, Vol.
1, 2006), 2006.

[24] O. Levy, I. Dagan, G. Stanovsky, J. Eckle-Kohler,
and I. Gurevych. Modeling extractive sentence intersec-
tion via subtree entailment. In Proceedings of COLING
2016, the 26th International Conference on Computa-
tional Linguistics: Technical Papers, pages 2891–2901,
2016.

[25] Y. Li, Z. A. Bandar, and D. McLean. An approach
for measuring semantic similarity between words us-
ing multiple information sources. IEEE Transactions on
knowledge and data engineering, 15(4):871–882, 2003.

[26] Y. H. Li and A. K. Jain. Classification of text docu-
ments. The Computer Journal, 41(8):537–546, 1998.

[27] S. Massung, C. Geigle, and C. Zhai. Meta: A unified
toolkit for text retrieval and analysis. Proceedings of
ACL-2016 System Demonstrations, pages 91–96, 2016.

[28] K. McKeown, S. Rosenthal, K. Thadani, and C. Moore.
Time-efficient creation of an accurate sentence fusion
corpus. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
317–320. Association for Computational Linguistics,
2010.

[29] R. Mihalcea, C. Corley, C. Strapparava, et al. Corpus-
based and knowledge-based measures of text semantic
similarity. In AAAI, volume 6, pages 775–780, 2006.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neu-
ral Information Processing Systems 26, pages 3111–
3119. 2013.

[31] J. Mueller and A. Thyagarajan. Siamese recurrent ar-
chitectures for learning sentence similarity. In AAAI,
pages 2786–2792, 2016.

[32] J. Pennington, R. Socher, and C. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[33] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and
D. Koller. Tuned models of peer assessment in moocs.
In Proceedings of the 6th International Conference on
Educational Data Mining (EDM 2013), 2013.

[34] L. R. Rabiner. Readings in speech recognition. chapter
A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition, pages 267–296. 1990.

[35] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[36] R. Sinha and R. Mihalcea. Unsupervised graph-
basedword sense disambiguation using measures of
word semantic similarity. In Semantic Computing,
2007. ICSC 2007. International Conference on, pages
363–369. IEEE, 2007.



[37] H. K. Suen. Peer assessment for massive open online
courses (moocs). The International Review of Research
in Open and Distributed Learning, 15(3), 2014.

[38] M. A. Sultan, S. Bethard, and T. Sumner. Dls @ cu:
Sentence similarity from word alignment and seman-
tic vector composition. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), pages 148–153, 2015.

[39] D. R. Swanson. Fish oil, raynaud’s syndrome, and
undiscovered public knowledge. Perspectives in biology
and medicine, 30(1):7–18, 1986.

[40] K. Thadani and K. McKeown. Towards strict sentence
intersection: decoding and evaluation strategies. In
Proceedings of the Workshop on Monolingual Text-To-

Text Generation, pages 43–53. Association for Compu-
tational Linguistics, 2011.

[41] D. Wang, T. Li, S. Zhu, and C. Ding. Multi-document
summarization via sentence-level semantic analysis and
symmetric matrix factorization. In Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 307–314. ACM, 2008.

[42] C.-P. Wei, C. C. Yang, and C.-M. Lin. A latent se-
mantic indexing-based approach to multilingual docu-
ment clustering. Decision Support Systems, 45(3):606–
620, 2008.

[43] C. Zhai and S. Massung. Text data management and
analysis: a practical introduction to information re-
trieval and text mining. Morgan & Claypool, 2016.


