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Abstract

A crucial component of any intelligent system is to understand and predict the behavior of

its users. A correct model of the user behavior enables the system to perform effectively to

better serve the users need. While much work has been done on user behavior modeling based

on historical activity data, little attention has been paid to how external factors influence the

user behavior, which is clearly important for improving an intelligent system. The influence

of external factors on user behavior are mostly reflected in two different ways: 1) Through

significant growth of users’ thirst about information related to the external factors (e.g.,

user may conduct a lot of search related to a popular event or related to some community

of interest), and 2) Through the user generated contents that are directly/indirectly related

to the external factors (e.g. user may tweet about a particular event). To capture these two

aspects of user behavior, I introduce Influence Models for both Information Thirst as well as

for Content Generation, sequentially, in this thesis. To the best of my knowledge, Influence

models for Information Thirst and Content Generation have not been studied before.

The thesis starts with the introduction of a new data mining problem, i.e., how to mine

the influence of real world events on users’ information thirst, which is important both for

social science research and for designing better search engines for users. I solve this mining

problem by proposing computational measures that quantify the influence of an event on a

query to identify triggered queries and then, proposing a novel extension of Hawkes process

to model the evolutionary trend of the influence of an event on search queries. Evaluation

results using news articles and search log data show that the proposed approach is effective

for identification of queries triggered by events reported in news articles and characterization
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of the influence trend over time.

However, the problem formulation in the aforementioned paragraph is based on the strong

assumption that each event poses its influence independently. This assumption is unreal-

istic as there are many correlated events in the real world which influence each other and

thus, would pose a joint influence on the user search behavior rather than posing influence

independently. To relax this assumption, in the next chapter of my thesis, I propose a Joint

Influence Model based on the Multivariate Hawkes Process which captures the interdepen-

dence among multiple events in terms of their influence.

The second way to observe external influence on user behavior is to analyze user generated

contents that are directly/indirectly related to such external factors, which I discuss in

the last chapter of the thesis. For example, user generated contents are often significantly

influenced by the community to which the user belongs to. While some work has been done

on mining such influence from structured information networks, little attention has been paid

on how to mine community-influence from user generated unstructured data. In this chapter,

I introduce the problem of mining community-influence from user generated unstructured

contents, particularly in the context of text content generation. Although text generation

has recently became a popular research topic after the surge of deep learning techniques,

existing methods do not consider community-influence factor into the generation process

and thus, the processes do not evolve over time. This clearly limits their application on

text stream data as most text stream data often evolve over time showing distinct patterns

corresponding to the shifting interests of the target community. Thus, it is compelling to

propose an Influenced Text Generation (ITG) Process that can capture this evolution of text

generation process corresponding to evolving community-influence over time. In this chapter,

we propose a deep learning architecture based Influenced Text Generation Process to address

this challenge. Experimental results with six independent text stream data comprised of

conference paper titles show that the proposed ITG method is really effective in capturing

the influences of different research communities on paper titles generated by the researchers.
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Chapter 1

Introduction

Twenty first century has seen the biggest explosion with respect to the generation of data.

The enormous scale of web as well as increasing number of business applications has pro-

duced all different types of data including user generated contents, activity logs, time series

variables, social network graphs etc. This upsurge in the volume of generated data has

resulted in the inception of a new era called Big Data. The huge volume of Big Data has

opened many interesting as well as open research challenges including infrastructure for Big

Data , Big Data Management, Big Data Search and Mining, Security and Privacy in Big

Data, different applications of Big Data etc. Fortunately, twenty first century has also pro-

vided us with immense computational power as well as intelligent algorithms to utilize this

Big Data to design more intelligent and robust systems that were not feasible before. Indeed,

the combination of proliferation of big data and the significant growth computational power

have enabled us to perform various interesting analysis as well as design more intelligent

applications which was beyond our scope before the era of Big Data.

The huge scale of Big Data comes with the fact that most of the data are unstructured

and it is almost impossible for a human to comprehend the underlying patterns associated

with it. However, to build an intelligent system, it is very important to discover these

underlying patterns hidden inside Big Data and convert them into useful knowledge. It is

also recommended that the discovered knowledge be as general as possible to be applicable

in a wide range of application scenarios [59]. Once such useful knowledge are extracted,

computers can then simulate intelligent behavior by searching for similar patterns it has

already seen and making decisions based on these patterns. This is the core philosophy of
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Machine Learning which has become an eminently popular research area in the last decade.

Machine Learning is a field of computer science that gives computers the ability to learn

without being explicitly programmed. Specifically, Machine learning explores the study

and construction of algorithms that can learn from and make predictions on data. As the

scale of generated data kept growing and Big Data eventually became a reality, application

of machine learning algorithms on Big Data became even more popular which resulted in

the birth of a new interdisciplinary field called Data Mining. Now-a-days, Data Mining is

applied in many business applications that have a large amount of data generated from the

system to analyze different patterns associated with it.

Data mining is the computing process of discovering patterns in large data sets involving

methods at the intersection of machine learning, statistics, and database systems. The over-

all goal of the data mining process is to extract information from a data set and transform

it into an interpretable knowledge for further use. Data mining technology has been further

empowered by the availability of Big Data. The primary objective of Big Data applications

is to help an organization make more informed decisions by analyzing large volumes of data.

The power of big data enables a lot of important application areas including intelligent

healthcare systems, Automated Quality Control in Manufacturing, Recommender Systems,

E-commerce search platforms [35] and Product Review Analysis [34], User Behavior Mod-

eling, Cyber Security and Intelligence [31], Crime Prediction and Prevention, Acceleration

of Scientific Discovery, Time series analysis [54], Stock Market prediction [69] and so on.

These intelligent systems help in improving our quality of life and thus, contribute to build

a better society.

A crucial component of any intelligent system is to understand and predict the behavior

of its users. A correct model of the user behavior enables the system to perform effectively

to better serve the users need. Data mining is the most widely adopted methodology to

model the behavior of users by analyzing large amount of interaction data between the

system and the users. While much work has been done on user behavior modeling based on
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historical activity data, little attention has been paid to how external factors influence the

user behavior, which is clearly important for improving an intelligent system. The influence

of external factors on user behavior are mostly reflected in two different ways: 1) Through

significant growth of users’ thirst about information related to the external factors (e.g.,

user may conduct a lot of search related to a popular event), and 2) Through the user

generated contents that are directly/indirectly related to the external factors (e.g. user may

tweet about a particular event). To capture these two aspects of user behavior, I introduce

Influence Models for both Information Thirst as well as for Content Generation, sequentially,

in this thesis.

1.1 Power of Big Text Data

This section talks about the power of big text data in greater detail. Figure 1.1 shows the loop

of how Big Text Data can empower intelligent systems and improve the quality of our life.

The loop starts with the real world where a lot of events take place everyday. To observe

the different events going on around the world, humans have developed many automatic

sensors/ devices to monitor these events as well as to report abnormalities associated with

many real world applications. For example, in stock market, a large number of transactions

happen everyday and automatic bots can monitor these transactions and also report back the

stock prices on a daily/ hourly basis. Another example is the closed-circuit television, also

known as video surveillance, which captures day-to-day happenings at a particular place and

generates data in the video format. Other examples are thermometer/ humidity meters which

report the temperature / humidity at a particular instant of time. All these are examples of

physical sensors which observe the real world and generate data in some structured format

upon which data mining models can be trained to learn interesting patterns and then perform

predictive analysis on unseen data. Such predictive capability of Big Data makes Intelligent

systems extremely useful.
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Figure 1.1: The Power of Predictive Modeling

Apart from the physical sensors mentioned above, humans themselves are another type

of important sensors who observe the real world and report data in the text format. Indeed,

after the proliferation of social media, blogs and forums, people talk about many different

topics and events in social media and express various opinions through them. The primary

format of the data generated by humans is natural language text. These user generated

contents, mostly in the format of text, are equally important besides physical sensor data as

they often reflect sentiment of the general mass, rapid spread of some diseases, occurrence

of natural calamities etc. For example, people often tweet about US presidential campaign

supporting different candidates which gives an indication about the relative popularity of

different candidates. Thus, to build any intelligent system, it is crucial to leverage these

text data generated by humans besides the data automatically reported by physical sensors.

This means, both text data and non-text data can be used to extract features and one can

then train a machine learning model to identify patterns from the features to discover new

knowledge which otherwise is difficult to observe from raw data. Such new knowledge can

greatly help in the decision making process tied to some particular business applications.
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This in turn, results in building more intelligent systems which improve our quality of life

and thus, changes the real world significantly. This new real world then generates new types

of events/phenomena which the physical sensors as well as we humans observe and report

to create new data, which again enable new applications and change the real world further.

This loop of iterative improvement thus continues which keeps improving our quality of life.

The central focus of this thesis is to study how intelligent systems can model user behavior

by mining big corpuses of text data. More specifically, this thesis presents how to model user

behavior in the context of external influencing factors like popular events, shift in community

interest etc. I primarily focus on two different aspects of user behavior analysis throughout

this thesis including modeling of user’s information thirst and user generated contents.

1.2 Challenges with Big Text Data

Text Data is an important type of data which is generated in massive amount primarily in

Social Networks, Online Blogs/Forums, Online News Portals, User Search Logs etc. While

structured data like information networks, connectivity graphs etc. have been vastly studied

in the literature for user behavior modeling in the context of influence analysis, there has

been less attention towards exploiting unstructured text data for the same. However, text

data often contains interesting signals that has the potential to infer influence posed by

external factors on user behavior. In spite of that, the lack of study in this domain may be

attributed to the unique challenges associated with the nature of text data itself. Below, I

highlight some of the challenges associated with Text Data in general.

• Lack of Structure: The main difference between Text data and other data in

general is the lack of structure. For example, numeric datasets often contain row-

column format, network data often contains specific graph format etc. However, Text

data consists of natural human language which has no predefined structure. Thus, they

are not directly usable as features in a predictive model and requires some non-trivial
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transformations to impose some structure on them.

• Noise: Text data often contains a lot of noise which are irrelevant with respect

to the information we seek for some particular goal task. Think about the location

tagging problem, where given a sentence, the primary goal is to tag the sentence with

the location it is talking about. Now, when we see the following sentence: “I went

to Chicago last week and it was cold like hell”. Here, the only word relevant to the

tagging problem is “Chicago”, while the rest are irrelevant to the given task. Filtering

these noisy words is an important challenge that needs to be solved in order to use

text data for knowledge mining.

• Subjectivity: Another challenge associated with text data is the subjectivity in

human interpretation. For example, think about online customer review for some

particular product like iPhone. Some customers may think the sound quality of the

phone is great, while others may feel its not standard. Some may argue that a small

sized screen is better while some may prefer large sized screens. Thus, the sentiment

associated with human reported text data have a significant Subjectivity factor which

is not observed in numerical data collected from physical sensors.

• Ambiguity: Ambiguity is a type of uncertainty of meaning in which several interpre-

tations are plausible. The lexical ambiguity of a word or phrase pertains to its having

more than one meaning in the language to which the word belongs. For instance, the

word “bank” has several distinct lexical definitions, including “financial” institution"

and “edge of a river”. Context may play a role in resolving ambiguity. For example,

the same piece of information may be ambiguous in one context and unambiguous in

another. Thus, using context to resolve ambiguity is another challenge associated with

text data.
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• Humor: Human language often contains humors which is often very hard to model

computationally. For example, think about the following sentence from a customer

review about a mobile phone handset: “This phone can break down bricks!”. Here

the reviewer is actually making the point that the phone is very sturdy by posting a

sarcastic comment. Brick is only used in the metaphorical sense here and has nothing

to do with the actual phone. Understanding such subtlety associated with humorous

language is another hard challenge for utilizing text data in predictive modeling.

Due to these challenges and open problems, Natural Language Understanding and Text

Mining are still active research area growing significantly.

1.3 Influence Mining from Text Data

A crucial component of any intelligent system is to understand and predict the behavior of

its users. A correct model of the user behavior enables the system to perform effectively to

better serve the users need. While much work has been done on user behavior modeling based

on historical activity data, little attention has been paid to how external factors influence the

user behavior, which is clearly important for improving an intelligent system. The influence

of external factors on user behavior are mostly reflected in two different ways: 1) Through

significant growth of users’ thirst about information related to the external factors (e.g.,

user may conduct a lot of search related to a popular event or related to some community of

interest), and 2) Through the user generated contents that are directly/indirectly related to

the external factors (e.g. user may tweet about a particular event) [refer to Figure 1.2]. To

capture these two aspects of user behavior, I introduce Influence Models for both Information

Thirst as well as for Content Generation, sequentially, in this thesis. To the best of my

knowledge, Influence models for Information Thirst and Content Generation have not been

studied before.
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Figure 1.2: The Power of Predictive Modeling

1.3.1 Influence Models for Information Thirst

The thesis starts with the introduction of a new data mining problem, i.e., how to mine

the influence of real world events on users’ information thirst, which is important both for

social science research and for designing better search engines for users. I solve this mining

problem by proposing computational measures that quantify the influence of an event on a

query to identify triggered queries and then, proposing a novel extension of Hawkes process

to model the evolutionary trend of the influence of an event on search queries. Evaluation

results using news articles and search log data show that the proposed approach is effective

for identification of queries triggered by events reported in news articles and characterization

of the influence trend over time.

However, the problem formulation in the aforementioned paragraph is based on the strong

assumption that each event poses its influence independently. This assumption is unreal-

istic as there are many correlated events in the real world which influence each other and

thus, would pose a joint influence on the user search behavior rather than posing influence

independently. To relax this assumption, in the next chapter of my thesis, I propose a Joint

Influence Model based on the Multivariate Hawkes Process which captures the interdepen-
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dence among multiple events in terms of their influence.

1.3.2 Influence Models for Content Generation

The second way to observe external influence on user behavior is to analyze user generated

contents that are directly/indirectly related to such external factors, which I discuss in

the last chapter of the thesis. For example, user generated contents are often significantly

influenced by the community to which the user belongs to. While some work has been done

on mining such influence from structured information networks, little attention has been paid

on how to mine community-influence from user generated unstructured data. In this chapter,

I introduce the problem of mining community-influence from user generated unstructured

contents, particularly in the context of text content generation. Although text generation

has recently became a popular research topic after the surge of deep learning techniques,

existing methods do not consider community-influence factor into the generation process

and thus, the processes do not evolve over time. This clearly limits their application on

text stream data as most text stream data often evolve over time showing distinct patterns

corresponding to the shifting interests of the target community. Thus, it is compelling to

propose an Influenced Text Generation (ITG) Process that can capture this evolution of text

generation process corresponding to evolving community-influence over time. In this chapter,

we propose a deep learning architecture based Influenced Text Generation Process to address

this challenge. Experimental results with six independent text stream data comprised of

conference paper titles show that the proposed ITG method is really effective in capturing

the influences of different research communities on paper titles generated by the researchers.
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Chapter 2

Influence Model for Information Thirst

In this chapter, I focus on modeling user’s Information Thirst in the context of external

influencing factors which impact user’s information seeking behavior significantly. The text

data I consider in this case are textual descriptions of external influencing factors as well

as user’s search activity log consisting of specific queries, timestamp of each query and

the url clicked by the user after posing the query. To make the problem formulation more

concrete, I choose a particular instance of Influence Modeling task where the goal is to model

the influence of popular trending events on user search behavior by analyzing user’s search

query log. Search logs often contain informative signals to infer these influences indirectly

by exploiting the correlation between event information and user activity information.

In summary, this chapter presents the study of how to model the influence of external

events on user queries by framing it as a novel data mining problem. Specifically, given a

text description of an event, I mine the search log data to predict queries that are triggered

by it and further characterize the temporal trend of influence created by the same event on

user queries. I solve this mining problem by proposing computational measures that quantify

the influence of an event on a query to identify triggered queries and then, proposing a novel

extension of Hawkes process to model the evolutionary trend of the influence of an event

on search queries. Evaluation results using news articles and search log data show that the

proposed approach is effective for prediction of queries triggered by events reported in news

articles and characterization of the influence trend over time.

10



2.1 Mining the Influence of Popular Trending Events on

User Search Behavior

While much work has been done on improving a search engine, little attention has been paid

to how external factors influence the user search behavior, which is clearly important for

improving a search engine. One important type of external factor is the trending events that

“significantly" attract the general mass. Consider the following example. The hollywood

movie “Captain America : Civil war" was released on May 6, 2016 and NYTimes published

a review article [1] about the movie on the same day. To analyze how users search for

this trending event, we collected two months (April and May, 2016) query log data from

a well-known commercial search engine (https://search.yahoo.com/) and retrieved the top

500 unique queries relevant to the published NYTimes article using the BM25 [57], a state-

of-the-art retrieval function. For these top 500 relevant queries, we plot their frequency

distributions within the two months (April and May, 2016) in Figure 2.1. Here, the vertical

red line indicates the release time of the movie (as well as the publication time of the

NYTimes article about it). The x-axis represents “time in days" where the movie release

time is set to be zero; the preceding and following days were set accordingly. The y-axis

represents the corresponding frequency of the top 500 unique queries retrieved using BM25.

From Figure 2.1, two things are evident. First, the user search activity suddenly increases

near the time when the event occurred and second, the activity exponentially goes down

as we move away from the origin. This confirms the fact that the “release" of the movie

triggered a lot of user queries asking for relevant information, thus influenced user search

behavior “significantly".

How can we computationally model and analyze the influence of such trending events on

user search behavior? What kind of queries are triggered by what kind of events? What

kind of events tend to be most influential? How long does the influence last? Can we

predict whether a user’s query was triggered by a particular event? Besides being interesting
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Figure 2.1: User search activity related to the release (May 6, 2016) of the Movie “Captain
America Civil war".

social science research questions, these questions are also interesting from the perspective of

improving the utility of a search engine. For example, if we can detect when a user’s query is

triggered by a particular event, it would help improve query auto-completion (by leveraging

the terms occurring in news articles about the triggering event), improve the search results

(by recommending relevant topics to the event), improve future query volume prediction, and

detect influential events (which can then be recommended to users that might be searching

for related topics).

To the best of our knowledge, the questions mentioned above have not been addressed in

the existing work. In this chapter, we conduct the first study of the problem of modeling the

influence of trending events on users’ search behavior from the perspective of data mining.

Specifically, we frame the problem as a novel data mining problem where, given a text

description of an event, we mine the search log data to identify queries that are triggered by

it and further characterize the temporal trend of influence created by the same event on user

queries. From data mining perspective, such a joint mining problem is novel and presents
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interesting challenges. First, “Influence" is an abstract concept and thus, it is not straight-

forward how to measure influence. Second, how can we fully characterize the influence of an

event on search queries? Finally, how should we formally define this data mining problem?

To tackle these challenges, we focus on studying how an event might have triggered

queries from users. This restrictive perspective allows us to quantitatively measure “influ-

ence" based on the number of queries triggered by the event. To determine whether a query

is triggered by an event, we propose to make the decision based on both textual similarity

and temporal proximity between the clicked web documents by users filing the query and

the text description of the event. To capture how the influence of an event on user queries

evolve over time, we propose a formal model based on the Hawkes process to characterize

the trend of influence.

We evaluate the proposed influence modeling methods using two sets of data-sets: 1)

NYtimes articles: we collected the most read articles from NYtimes during two months span

of April and May, 2016 using the NYtimes developers API to use them as trending events

and 2) Query-log data: We also collected two months contemporary query log data from a

widely used popular search engine (https://search. yahoo.com).

Evaluation results using these data sets show that the proposed approach is effective for

identification of queries triggered by events reported in news articles and characterization of

the influence trend over time. We further show that the proposed extended Hawkes model

is useful in many ways, including improving the accuracy of predicting whether a newly

entered query by a user was triggered by an event (which further enables a search engine to

optimize its response to the query accordingly) and answering many interesting questions

related to understanding the influence of events on queries.

In Summary, we make the following contributions in this chapter: (1) We conduct the first

study of modeling the influence of trending events on search queries and frame the problem

as a new data mining problem. (2) We propose a computational method for measuring

the influence of an event on a query and discovering triggered queries by an event. (3) We
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propose a novel extension of Hawkes process to model the influence trend of an event on user

queries over time. (4) We propose a way to quantitatively evaluate an influence model using

the task of predicting whether a newly entered query by a user has been triggered by some

event, and show that both the method for measuring influence and the extended Hawkes

process are useful for this prediction task, and they can be used immediately in a search

engine to potentially customize the response of the search engine to a user’s event-triggered

query based on the event.

2.2 Related Work

Search query logs have been extensively studied to understand user search behavior and

provide better search experience [28, 42, 72]. Existing work mostly focused on the inference

of users’ search intent based on their own search habit and search history. On the other

hand, this chapter tries to model how user behavior on a search engine is influenced by

external factors such as trending events.

Temporal Information Retrieval and Event Detection are two areas closely related to

our work. While Event Detection has been studied vastly in the literature (see [4] for a

recent survey), research interest on Temporal Information Retrieval has grown recently [11].

However, we want to emphasize that, neither of these is the intended goal of this study

and our primary motivation is somewhat orthogonal. To be more specific, our work does

not intend to study how time-sensitive information needs can be addressed [16, 7] or how

users’ information need change over time [41] or how to detect some events from social

networks/news media [4]. Rather, given that some event has already been reported, we go

one step further to investigate how the event may impact/influence the search behavior of

the users.

The notion of event-based retrieval was introduced by Strötgen and Gertz [63] by return-

ing events instead of documents. Zhang et al. [75] addressed the detection of recurrent event
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queries. Ghoreishi and Sun [22] introduced a binary classifier for detecting queries related

to popular events. Kanhabua [30] extended the work [22] by enabling the classifier to detect

less popular queries beside popular ones. However, all these approaches are supervised clas-

sification methods and largely depend on the quality of training labels provided by humans,

whereas our approach is completely unsupervised.

Kairam et. al. [29] investigated the online information dynamics surrounding trending

events, by performing joint analysis of large-scale search and social media activity. Matsub-

ara et. al. [48] presented a new model for mining large scale co-evolving online activities.

Pekhimenko et al. [53] designed a system named “PocketTrend" that automatically detects

trending topics in real time, identified the search content associated to the topics, and then

intelligently pushed this content to users’ local machine in a timely manner. However, none

of these studies provide answer to the question: how to model the temporal trend of influence

created by an event on user queries, which is one of the primary motivations of our work.

Another important topic related to this chapter is point process, which has been used to

model social networks [8] and natural events [78]. People find self-exciting point processes

naturally suitable to model continuous-time events where the occurrence of one event can

affect the likelihood of subsequent events in the future. One important self-exciting process

is Hawkes process, which was first used to analyze earthquakes [78], and then widely applied

to many different areas, such as market modeling [20], crime modeling [62], conflict [73],

viral videos on the Web [15] etc. In this work, we extend the original Hawkes process to

propose a new model that can capture the dynamics of influence by trending events on user

search behavior.

2.3 Problem Formulation

We solve the problem of modeling the influence of an event on search queries by framing it

as a novel data mining problem where we would jointly mine two different types of data,

15



i.e., text data describing many events and search log data that contains user queries and

clickthrough records. We assume that each event, E, is represented as a tuple <WE,tE>,

where, WE is some natural text description of that event (e.g., some news article about that

event) and tE is the publication timestamp of WE. A query is represented as a tuple with

three attributes, i.e., <Wq,tq,Uq>. Here, Wq is the set of keywords that query q contains,

tq is the timestamp of the query submission and Uq is the URL that the user clicked after

posing the query. The desired output includes the following three elements:

1. Influential Events (or “Trending Events”): An influential event is any event E

that attracts the interest of the general mass significantly and has triggered queries from

many users. We want to discover a set of most influential events from the data sets.

2. Triggered Queries: A triggered query (denoted by q) by event E is a query entered

by a user due to knowing information about event E. In other words, had the user not heard

about E, he/she would not have entered query q. For each influential event E, we want to

discover all the triggered queries by the event.

3. Influence Trend Model (or just Influence Model): An influence trend model

for event E is a parameterized process that can model the temporal trend of influence by

event E on user search queries. The parameter values of the model should be interpretable

for characterizing how the intensity of the influence evolves over time.

The rationale of requiring the model to be parameterized with interpretable parameters

is so that we can use the parameter values to obtain a concise quantitative summary of the

dynamics of the influence from an event, which is essential for enabling many interesting

applications of influence analysis (e.g., answering questions such as “how quickly does the

influence intensity grow over time?” and “how quickly the influence disappears?”)

Our problem formulation would enable many interesting applications, particularly for

understanding what kind of events tend to have more significant influence on user queries,

what kind of queries were triggered by a particular event, and how the influence evolves

over time. Such analysis can be potentially configured to compare different kinds of events,
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similar events reported in different time periods or by different sources, and to compare

different user groups to understand how different groups of users may have been influenced

by the same event in different ways.

2.4 Methods for Influence Discovery and

Characterization

To solve the proposed influence mining problem, we need to complete three subtasks: 1)

Discovery of events that have significantly influenced user queries, which we will refer to

as influential events. 2) Discovery of queries influenced by any influential event, which we

will refer to as event-triggered queries, or simply triggered queries. 3) Characterization of

the temporal trend of the influence of an influential event on user queries over time. All

these tasks are new tasks that are challenging due to the lack of labeled data for supervised

learning. They have not been studied in the previous work, thus we do not have natural

baseline methods to start with either. Below we present our proposed unsupervised method

for solving all the three problems.

A careful analysis of these tasks suggests that subtask one and subtask two both rely on

solving the basic problem of determining whether one event has influenced a query. Once we

can do that, we would be able to quantify the influence of an event by counting how many

queries are influenced by the event, and also easily obtain which queries are influenced by

which event.

To solve subtask three, we propose to model the frequency of triggered queries over

time with a temporal process model based on the Hawkes process, which assumes that

the frequency of triggered queries at time t is a function of a base frequency λ0 capturing

the general popularity of this kind of queries, how quickly the influence decreases over

time (captured by a parameter β), and the homogeneity of user search behavior over time

(captured by a parameter α). The advantage of such a model is that by fitting the model
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to our observed frequency of triggered queries, we can obtain these meaningful parameters

that are directly useful for characterizing the trend of influence.

2.4.1 Discovery of influential events and triggered queries

Our basic problem is the following: Given a query and an event, how can we know whether

the event has influenced the query? Due to the complexity of the notion of influence, a

completely rigorous definition of influence is nearly impossible. To make the problem more

tractable, we propose three reasonable heuristics to guide us in designing a computational

measure of influence. Specifically, given an event E =< WE, tE > and a particular query

submission q =< Wq, tq, Uq >, we can reasonably make the following three assumptions about

influence, which would help us design a function to computationally measure the influence

of E on q. Here, we denote the content of the clicked-URL, i.e., content(Uq) simply by WU .

Assumption 2.4.1 (Query-Textual-Similarity). The higher the textual-similarity between

WE and Wq, the higher the chances that q is triggered/influenced by E. This assumption

allows us to prune cases where the query is completely irrelevant to the event.

Assumption 2.4.2 (Temporal-Similarity). The higher the temporal-similarity between tq

and tE, the higher the chances that q is triggered/influenced by E. This assumption allows

us to distinguish queries triggered by similar events in the past from those triggered by a

current event.

The Temporal-Similarity is important because Query-Textual Similarity alone is insuf-

ficient. For example, consider the two trending events “US election 2012" and “US election

2016". Now, if a user poses a query “US election", it is hard to tell which event actually

triggered the query submission. However, if we know the timestamp of the query submission,

we can better predict the triggering event. For example, if the query was posed in the year

2016, then with high probability, it was triggered by the event “US election 2016" as it was

trending at that moment. On the other hand, if it was posed in the year 2012, probably the
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triggering event was “US election 2012". Thus, besides textual similarity, temporal similarity

also plays an important role in predicting the influence.

Another useful piece of information that helps to verify whether some event E indeed

influenced the submission of query q is the content of the URL which the user clicked after

posing the query. If the content of the clicked-URL, i.e., Uq, is highly similar to the text

description of event E, that means the user was actually looking for news about the same

event. This, in turn, means that query q was influenced/triggered by event E. This gives us

our third heuristic:

Assumption 2.4.3 (ClickedURL-Textual-Similarity). The higher the textual-similarity be-

tween WE and WU (WU is the text of the clicked documents by users who entered query q),

the higher the chances that E triggered/influenced q.

Intuitively, we would like to design a measure that combines all the three heuristics so

that a query-event pair would be scored high if (1) the query text is similar to the event

text description, (2) the clicked documents are similar to the event text description, and (3)

the time stamp of the query and that of the event are close. One way to combine them is

to design a similarity/distance function for each of these three dimensions and combine the

three functions into one single scoring function. Specifically, we use the the following scoring

function to measure the influence:

F (E, q) = TxtSim(WE,Wq) · TmpSim(tE, tq) · TxtSim(WE,WU) (2.1)

We discuss these components in more detail below:

TxtSim(WE,Wq): Similarity between query-document pair has been studied in the

literature for a long time. One popular function from the literature is the “Okapi BM25"

ranking function [57]. However, we could not use “Okapi BM25" directly for the major

limitations discussed below.
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First, each “event-text" (description of the event) usually contains a title and a body. The

title often contains more important words pertaining to the event, while the body contains

verbose details. It is thus necessary to put more emphasis on matching the title keywords

first and then match the body details. The original “BM25" similarity function unfortunately

does not provide such customizations. “BM25F" [74], an extension of BM25, handles this

relative term weighting scenario, although “BM25F" is also not directly applicable to our

problem setting for the following reason: To be able to compare the influence across different

trending events, it is necessary that the “BM25F" score computed for different pairs of “event-

text" and “query-text" be comparable. However, this is not the case because there is a large

variance in the length of both “event-text" and “query-text". One might argue that, “BM25F"

provides “Document Length Normalization" and “Relative Term Weighting", which should

resolve the problem. But ones careful attention would reveal that “BM25F" is designed for

a setting where the information need, i.e., the query is constant and only the document is

varied to compute the similarity. But, in our case, both the document and query are variable

and thus, we need both “document length normalization" and some kind of “query length

normalization".

To address the two issues mentioned above, we use the following modified version of BM25

as the TxtSim function to fit our problem setting. Let, WE =< WE1 ,WE2 , .......,WEn > be

the “event-text" and Wq =< Wq1 ,Wq2 , .......,Wqn > be the “query-text".

TxtSim(WE,Wq) =

|WE |∑
i=1

ω(WEi
).IDF (WEi

).TF (WEi
,Wq).(k1 + 1)

TF (WEi
,Wq) + k1.(1− b+ b. |Wq |

avgql
)

subject to
|WE |∑
i=1

ω(WEi
) = 1 (2.2)

Note that, equation 3.1 is similar to the original “BM25" with the exception of the new

term ω(WEi
) and the constraint that the weights must sum to 1. ω(WEi

) is essentially the
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weight of each n-gram in the “event-text" which reflects the importance of that particular n-

gram with respect to the “event-text". ω(WEi
) allows the TxtSim(WE,Wq) to be comparable

across different WE and Wq as we enforce the constraint
∑|WE |

i=1 ω(WEi
) = 1. Furthermore,

one can easily set ω(WEi
) in such a way so that title n-grams get more weight than body

n-grams as well as bigrams get more weight over unigrams and vice-versa. The specific

weights we used for our experiments are mentioned in section 3.6. The IDF (inverse document

frequency) and TF (term frequency) bear the usual meaning as in the original BM25 function.

TxtSim(WE,WU ): TxtSim(WE,WU) is basically the similarity between a pair of

documents, in contrast with TxtSim(WE,Wq), which is the similarity between a query and

document pair. TxtSim(WE,WU) is almost similar to TxtSim(WE,Wq) with the exception

that TxtSim(WE,Wq) contains only one ω (for WE), while TxtSim(WE,WU) contains two,

i.e., ω1 and ω2, where ω1 and ω2 are weight distributions for the event-text (WE) and clicked-

url-content (WU) respectively.

TxtSim(WE,WU) =

|WE |∑
i=1

ω1(WEi
) · ω2(WEi

) · IDF (WEi
)

· TF (WEi
,WU)

subject to,

|WE |∑
i=1

ω1(WEi
) = 1 ,

|WU |∑
i=1

ω2(WUi
) = 1 , ω2(WEi

) = 0 if Ei /∈ WU (2.3)

The essence of equation 2.3 is that matching an n-gram which has high weights for both

WE and WU contributes more to the similarity between WE and WU , whereas, n-grams

having low weights for one/both of the articles contribute less to the similarity.

TmpSim(tE, tq): The TmpSim function is expected to behave in the following way:

if two events are far distant in time, their temporal similarity should be low; whereas, if they
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are close in time, the temporal similarity should be high. We also assume that the temporal

similarity decreases exponentially as the distance in time increases. Below is an example of

a function with such desired properties, where δ is the decaying parameter:

TmpSim(tE, tq) = e−δ.|tE−tq | (2.4)

2.4.2 Influence Trend Modeling

Once we can measure the influence an event E has over different user queries, the next task

is to model the trend of such influence over time. Such modeling would allow us to study the

characteristics of influence in a systematic way and enable many interesting applications like

predicting future volume of queries, optimizing search recommendations etc. To accomplish

this, we propose function Trend(E, t), which takes as input an event E and timestamp t

and returns the popularity/trendiness of event E at timestamp t. There are many ways one

can define how to measure the popularity/trendiness of an event. For example, the number

of tweets related to the event, number of views for news articles relating to the event, click

counts for the event webpage, number of social media posts sharing the event etc. In this

work, we define popularity/trendiness of an event by the users tendency to pose queries that

are relevant to the event. We choose this definition because we are specifically interested in

modeling the influence of trending events on user search behavior.

Defining the Trend(E, t) is not trivial. First, we introduce a set of assumptions that will

help us formalize the notion of “trendiness".

Assumption 2.4.4 (Influence Growth). Each query submitted to search engine τ that is

relevant to event E increases the chance of subsequent submission(s) of relevant queries to

τ , thus, grows the trendiness/influence of event E.

Assumption 2.4.4 simply says that each relevant query submission from one user indicates

an increase in the tendency of other users to pose similar relevant queries. In other words,

the trendiness of an event is directly/indirectly influenced by the previous query submissions
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relevant to the same event, which in turn, reflects the tendency to receive new queries relevant

to the event. To see the rationale of Assumption 2.4.4, consider a scenario when a user is

exposed to an event that he/she feels interested about, the user may use multiple queries to

find out more about the event and then share the event details on some social media platform

or talk to some friends about the event. These friends, being interested in the event after

hearing about it, may do further search. Thus, the influence of the event propagates from

one user to another and reflects in their search activity. As another example scenario, say

some popular news portal publishes a featured article about some event. Many people would

then read that article to know about the event/incident and start searching for more details

about it. In this case, new incoming queries searching about a particular event gives useful

indication about further submission of similar relevant queries. Thus, a significant number

of relevant queries actually indicate the growth of the trendiness/influence of the event.

Given that the “trendiness" of an event, E, at moment t is dependent on all the relevant

(w.r.t. E) queries posed before timestamp t, the next obvious question is: to what extent

each of the previous queries contribute to the current “trendiness"? To answer this, we make

two further assumptions as mentioned below.

Assumption 2.4.5 (Query Relevance). The contribution of a query q (submitted at time

tq) to the “trendiness" of an event E at moment t, where t > tq, is proportional to the textual

similarity between the “event-text", WE and the “query-text", Wq, i.e., TxtSim(WE,Wq).

Assumption 2.4.6 (Query Timestamp). The contribution of a query q (submitted at time

tq) to the “trendiness" of an event E at moment t, where t > tq, exponentially decays as the

difference between t and tq increases.

Assumption 2.4.5 and 2.4.6 are very reasonable. Assumption 2.4.5 basically says that,

highly relevant queries grow the trendiness of an event, thus, indicates the growth in the

volume of future relevant queries; at the same time, Assumption 2.4.6 says that the contri-

bution of a past query to the current “trendiness" of the event decays exponentially with

time.

23



A parametric model for influence

Incorporating these two assumptions, we introduce Equation 2.5 presented below to compute

the “trendiness" of an event E at time t.

Trend(E, t) = λ0 +
n∑
i=1

α · TxtSim(WE,Wi) · e−β(t−ti) (2.5)

Equation 2.5 contains three parameters, i.e., λ0, α and β. λ0 is a constant which reflects the

base trendiness that is assumed to be always present. α is a scaling factor to control the

contribution of TxtSim(WE,Wi) on the current “trendiness" and β is the scaling factor to

control the exponential decay in time. W1, W2, ......, Wn represents all the queries relevant

to event E that were posed before timestamp t.

Equation 2.5 is not entirely new; it is similar to the self-exciting point processes [17]

e.g. Hawkes Process [25]. However, the point processes models the recurring events of the

same type, whereas our task is to model influences of one type of event (e.g. Trending

articles) on other type of events (e.g. user search behavior). Thus, we include the textual-

similarity between the past queries and event-text, i.e., TxtSim(WE,Wi), into the basic

Hawkes process to fit our problem scenario.

Figure 2.2 shows a hypothetical simulation of how equation 2.5 works. Without loss of

generality, we assume that TxtSim(WE,Wi) = 1.0 for any choice of WE and Wi. However,

this choice does not affect our attempt to present the spirit of equation 2.5. The x-axis in

Figure 2.2 represents time and the y-axis represents the corresponding “trendiness" of some

hypothetical event E. The “Blue" dots represent each query submission that is relevant

to E. These “Blue" dots were generated by simulating the Hawkes Process (see [51] for

details). For this particular simulation, λ0, α and β were set to 0.5, 2.5 and 3.0 respectively.

This means, there is always a base trendiness of λ0 equal to 0.5. The “trendiness" goes

up as people start querying about the event E (note the first blue dot), which, increases

the chance of generating further queries. Thus, the volume of queries influenced by E and
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Figure 2.2: Simulating the trend of some hypothetical event.

“trendiness" of E grows mutually by enhancing each other. For example, at the vicinity of

time zone t = 6, a lot of queries were posed which resulted in further query submissions and

the “trendiness" rises up significantly. The “trendiness" goes down exponentially with time

if no further queries are posed. This is signified by the exponential decay near time zone

t = 8. Note that, the current estimate of “trendiness" is directly correlated to the expected

volume of relevant queries in near future. The higher the current “trendiness" is, the more

the probability of observing high volume of relevant queries in future. However, the estimate

of “trendiness" is incrementally updated as we move forward in time and observe (do not

observe) new user queries.

Estimation of the parameters

Let the set of parameters be Λ = {λ0, α, β}. We adopt maximum likelihood estimation

technique to find the optimal parameter values for equation 2.5. First, we show how to

compute the log-likelihood for a single event E and then we extend it to multiple events
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case. Considering the query submission sequence q1,q2, ........, qn (all related to event E) as

a simple point process, the likelihood for a single trending event can be written as follows

(see [51] for background):

logL =

∫ tqn

0

(1− Trend(E, t))dt+
n∑
i=1

log(Trend(E, tqi)) (2.6)

After some simple mathematical operations, equation 2.6 boils down to the following

form:

logL = −
(
α

β

)
· TxtSim(WE,Wqi) ·

{
1− e−β·(tqn−tqi )

}
+ tqn − λ0 · tqn +

n∑
i=1

log(Trend(E, tqi)) (2.7)

Given the close form of the log likelihood function (equation 2.7), the optimization prob-

lem to find the optimal parameter set Λ∗ is written as follows:

Λ∗ = arg max
Λ

L({q1, .., qn}|E,Λ) (2.8)

For multiple events E1, E2, ....Em, the optimization problem is extended in the following

way:

Λ∗ = arg max
Λ

m∑
j=1

L({qj1, .., qjn}|Ej,Λ) (2.9)

One can use any non-linear optimization method to solve this maximization problem.

Nelder-Mead Simplex Method [23] is one such popular optimization technique. Another

useful approach is the Sequential Least SQuares Programming (SLSQP) [9].
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Category # of Avg. Title Avg. Body
articles Length Length

Movies 25 18.88 458.08
Sports 15 19.53 508.4
US 18 20.38 487.77

World 11 18.18 438.81
Total 69 19.30 473.69

Table 2.1: Description of Trending-Event data set

2.5 Experimental Design

Data Sets: We collected two sets of data sets: one for trending events and one for user

query history. We call these two data sets Trending-Event dataset and Query-Log dataset

respectively. The following two paragraphs provide details about these two data-sets:

Trending-Event data-set: An obvious choice for a text data set describing events

is news articles (though other data such as social media might also be applicable). The

NYTimes Developers Network (thanks to them) provides a very useful api called “The Most

Popular API" [2], which automatically provides the url’s of the most e-mailed, most shared

and most viewed articles from NYTimes.com during the last month from the date of the issue

of the query. We chose to use this API because of two major benefits: 1) it automatically

removes duplicate articles, thus we don’t need to deal with cases where multiple articles are

related to the same event. 2) it only provides the most popular articles from NYTimes,

thus the quality/accuracy of the events represented by these articles is very high. Using

this API, we collected the most e-mailed, most shared and most viewed articles from the

two months span: April and May, 2016. Each article consists of a tuple <title-text, body-

text, timestamp>. Among different categories of news, we used only four categories for

our experiments: US (National Affairs), Movies, Sports and World (International Affairs).

Table 2.1 shows some details about the data-set.
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Category Total % Pos. % Neg. Avg.
query instance instance txt-sim

Movies 193,282 16.24 83.75 2.49
Sports 616,449 0.84 99.15 2.48
US 204,926 33.72 66.27 1.99

World 22,197 7.68 92.3 1.96
Total 1,036,854 10.35 89.64 2.38

Table 2.2: Description of Query-Log data set

Query-Log data-set: To analyze the user queries contemporary to the articles in

Trending-Event data-set, we use the two-months (April and May, 2016) user query log data

from the widely used search engine at https://search.yahoo.com. Each query submission q

is represented as a tuple <query-text, timestamp, clickedURL>. The two-months query

log data contains 105, 925, 732 query submissions in total. To keep the computation feasible,

for each article E in the Trending-Event data-set, we retrieved top 500 unique (in terms

of text) queries that has at least a similarity score of 1.5 (with respect to E) according

the textual similarity function in equation 3.1 and discarded the rest. This filtering step is

reasonable because if the textual similarity is very low (less than 1.5), we assume that the

influence prediction problem becomes trivial, i.e., there is no influence of E on the query.

Thus, textual similarity itself is sufficient in this case to decide whether there is an influence

or not. However, more challenging cases are when the query shares a high degree of textual

similarity to the event E, but still is not influenced by the event. In this chapter, we focus

on these type of queries with significant textual similarity to the event and assume that the

other queries are not influenced by any event in our data set. The summary of this data-set

is presented in Table 2.2.

Predictive modeling for quantitative evaluation: Quantitative evaluation of the min-

ing results pose challenges because there is a lack of gold standard for what events are

influential and the ground truth for the true influence trend of an event. We overcome this

28



difficulty by proposing a way to perform indirect quantitative evaluation based on the task

of predicting whether a user’s newly input query is triggered by an event. The prediction

setup is intended to simulate a real application scenario when a search engine receives a

query from a user. In such a scenario, it would be beneficial for the search engine to “know”

whether this query was triggered by a particular event since if it was, then the search engine

would be able to leverage this knowledge to optimize the search results to be presented to

the user (e.g., recommending content related to this event).

With such a setup, we can use the component techniques in our proposed mining ap-

proach, including text similarity functions, temporal similarity function, and the extended

Hawkes model, to construct a prediction model to attempt to predict whether a “new” query

in a separate held-out search log data set is influenced by any event based solely on the

query without using any clickthrough information. The clickthrough information, however,

is only used to create the gold standard labels for the evaluation purposes, i.e., whether

such a query is indeed triggered by an event (we used equation 2.1 from section 2.4.1 along

with threshold 0.01). One can argue that a better way to create the gold standard labels is

to involve human judgments. However, for our data-set, this means the human annotators

would have to go through 1, 318, 359 <event, query, url-content> triplets, which is practi-

cally infeasible. So, we had to opt for some automated techniques for annotating the gold

standard labels.

To evaluate the quality of the gold standard labels created by our automatic approach,

we randomly sampled 200 positive and 200 negative examples labeled by the automatic

process. Then, we asked three volunteers to independently go through these 400 <event,

query, url-content> triplets and manually label each of them with 1 if, after reading the

event description and contents of “url-content", the annotator thinks the query was indeed

influenced by the event or 0, otherwise. We computed Cohen’s kappa coefficient [14] to

measure the inter-rater-agreement which was found to be reasonably high, i.e., 0.835. Thus,

we conclude that the gold labels created by our automatic approach is reliable.
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The labeled data-set created in the way previously described is highly imbalanced as

most of the queries are not influenced with respect to some particular event E. To make the

data-sets balanced, we randomly under-sampled from the pool of the negative samples to

match the size of the positive examples for reporting the results in section 3.6. Concretely,

we can use the following equation (eqn. 2.10) to compute the influence relation between

event E and query q without using the clickthrough information and then pick a reasonable

threshold to separate the influenced queries from the rest. We did threshold analysis which

showed that the prediction model remains very stable for wide range of threshold value, i.e.,

[0.8, 5] and we chose 1.0 for our experiments (the details are omitted due to lack of space).

We call this model the “IP" (Influence Prediction) model.

F (E, q) = TxtSim(WE,Wq) · TmpSim(tE, tq) · Trend(E, tq)) (2.10)

Performance Metric: To evaluate the performance of the proposed predictive model, i.e.,

IP , we use the four popular measures available in the literature: precision, recall, specificity

and F-measure (see [24] for details). We also present results for the recently introduced

K-measure [60] to show that “IP" model achieves better performance in terms of this new

measure too.

2.6 Results

In this section, we report our experimental findings including both qualitative and quanti-

tative evaluation results. We first start with some implementation details, then describe the

qualitative and quantitative evaluation sequentially.

2.6.1 Implementation Detail

For the weight distribution ω in equation 3.1, we followed the weighting scheme presented in

Table 2.3. This significance of Table 2.3 is that it puts more weight on the title-text matching
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Bigram Unigram Sum
Title 0.49 0.21 0.70
Body 0.21 0.09 0.30
Sum 0.70 0.30 1.00

Table 2.3: Weight allocation for Title vs Body and Unigram vs Bigram in equation 3.1.

(0.7) in comparison to the body-text matching. Similarly, it puts more weight on bigram-

matching (0.7) in comparison to unigram-matching (0.3). An immediate consequence is that,

bigram-matching in the title-text gets the highest reward (0.49), whereas, unigram-matching

in the body-text gets the least reward (0.09). In other words, the weights for all bi-grams in

the title of the event-text summed up to 0.49 and the weight of each individual bi-gram is

proportional to its term frequency in the title-text. Similarly, the weights for all unigrams

in the body of the event-text summed up to 0.09 and the weight of each individual unigram

is proportional to its term frequency in the body-text. The same weighting scheme was used

for ω1(WEi
) and ω2(WEi

) in equation 2.3.

The “trendiness" parameters, i.e, Λ = {λ0, α, β} are learnt automatically using equa-

tion 3.13 (see table 2.6 for the exact values). Parameter δ (equation 2.4) was heuristically

set to 0.8. This heuristic value is not an issue because for all the variants of the “IP" model

(mentioned in table 2.7), we use the same δ value, thus, the optimal value is irrelevant for

comparative analysis.

2.6.2 Qualitative evaluation

We show some sample data mining results to analyze their quality. First, we show the top

four most influential events for each category in our data set as measured by the overall/total

number of triggered queries in Table 2.4. They are all intuitively influential events. For

example, the top one for category “Movies" is the release of “Caption America : Civil War",

while the top one for category “World" is the “Panama Papers leaked".

Second, we show a sample of triggered queries with highest frequency for the event “curt
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# Movies Sports US World
1 “captain America:

Civil War" released
san antonio spur
vs oklahoma city
thunder basketball

harriet tubman
ousts andrew
jackson

panama papers
leaked

2 alden ehrenreich
Cast “hail caesar"

Rise of leicester city
in premiere league

donald trump com-
ments on transgen-
ders toilet use

sadiq khan elected in
london

3 gosling and Crow
star “nice guys"

curt schilling fired
from espn

donald trumps run-
ning mate

philippine presiden-
tial election

4 ken loach wins
Palme dor

western conference
finals

indiana primary
elections

brazil president im-
peachment

Table 2.4: Top influential events for different categories.

# curt schilling fired from
espn

panama papers leaked

1 curt schilling espn panama paper leak
2 espn curt schilling suspen-

sion
celebrity involved in
panama offshore account

3 curt schilling facebook post panama paper politicians
4 curt schilling comment panama paper american
5 curt schilling blog panama paper law firm

Table 2.5: Popular queries triggered by influential events.

schilling fired from espn" and event “panama papers leaked" in Table 2.5. We see that these

queries are indeed well associated with these events.

Finally, we examine the optimal parameters learned by fitting the modified Hawkes model

in Table 2.6.

Interpreting Model Parameters: We focus on interpreting the optimal values of

the modeling parameters, Λ = {λ0, α, β}, which are automatically learnt by the estimation

technique introduced in section 3.4.2. Table 2.6 shows these values. Indeed, these values have

intuitive interpretation that matches our real-life expectation. For example, λ0 essentially

reflects the general interest in posing queries related to some trending event. Table 2.6

shows that people usually have the most interest (λ0 = 0.0656) in the US category, i.e.,
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Category λ0 α β
Movies 0.0420 0.9082 2.6539
Sports 0.0146 0.4810 1.0208
US 0.0656 1.0892 2.3727
World 0.0117 0.1464 0.3292

Table 2.6: Trendiness parameter for different types of events.

events related to the national affairs. While the international affairs, i.e., “World" category

generally draws the least attention (λ0 = 0.0117). Next, α models the degree of homogeneity

in user search behavior. So, high value of α means high degree of similarity in the intra-

community search pattern. For example, in case of the category “US" (α = 1.0892) and

“Movies" (α = 0.9082), we found the homogeneity to be significantly higher than for the

category “Sports" (α = 0.4810) or “World" (α = 0.1464), indicating the search behavior is

more diverse and discrete for the “Sports" and “World" category. Finally, β models the decay

in user interest with time; thus, high value of β indicates a quick drop of interest among the

general mass. As expected, β obtained for the “Movies" category (β = 2.6539) was found to

be the highest, as people usually talks a lot about movies when they get released and the

topic disappears quickly in few days. However, to our surprise, we also obtained high value

of β for the “US" category (β = 2.3727). One plausible explanation for this fact may be

that there are too many national news to follow and people switch their interest from time

to time following different national news. On the other hand, value of β for the “Sports"

(β = 1.0208) and “World" (β = 0.3292) category was found to be smaller, indicating the

general interest is somewhat more prevailing in these cases. All these results show some

qualitative analysis about how effective our proposed mining model is.

Capturing Trend: To verify how well our proposed extended Hawkes model can capture

the trend of influence by some event on user queries, we generated the simulated “trendiness"

plot (Figure 2.3) for the event “Captain America : Civil War" (The real data is plotted in

Figure 2.1). To generate Figure 2.3, we used the learnt optimal parameters from table 2.6,
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i.e., {λ0, α, β} = {0.0420, 0.9082, 2.6539}. We also assumed that at a certain moment t,

we know all the past queries that were influenced by the event along with their textual

similarity to the event-text. Then, we used equation 2.5 to compute Trend(E, t) at different

t and plotted that in Figure 2.3. Cross examination of Figure 2.3 and 2.1 reveals that, the

extended Hawkes model can, in fact, capture the real trend quite reasonably.

Figure 2.3: Simulation of Trendiness for the event: release of “Captain America : Civil War"
Movie

Our qualitative analysis thus shows that overall the proposed approach is able to generate

meaningful and interesting knowledge that can help better understand the influence of news

events on user queries.

2.6.3 Quantitative evaluation with predictive modeling

We now turn to quantitative evaluation of the proposed approach using the predictive mod-

eling task for predicting whether a user’s newly input query has been influenced by an

event. To better understand the role of each three basic components of the “IP" model (see
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Method TxtSim TmpSim Trend
txt Yes No No

txt-time Yes Yes No
txt-trnd Yes No Yes

txt-time-trnd Yes Yes Yes

Table 2.7: Summary of different versions of the “IP" model.

Category Method F-measure K-measure Precision Recall-f Recall-K Specificity
txt 0.6667 0.2366 0.5282 0.9035 0.5684 0.6682
txt-time 0.7089 0.2717 0.5505 0.9952 0.8656 0.4061

Movies txt-trnd 0.8084 0.5526 0.6978 0.9606 0.9068 0.6457
txt-time-trnd 0.8087 0.5532 0.6987 0.9598 0.9045 0.6488
txt 0.6667 0.1482 0.5000 1.0000 0.7626 0.3855
txt-time 0.6783 0.2584 0.5132 1.0000 0.5634 0.6950

Sports txt-trnd 0.8239 0.5990 0.7345 0.9382 0.9382 0.6609
txt-time-trnd 0.8239 0.5992 0.7348 0.9378 0.9378 0.6615
txt 0.6710 0.0372 0.5063 0.9945 0.0952 0.9420
txt-time 0.7441 0.5234 0.6444 0.8804 0.6806 0.8428

US txt-trnd 0.8120 0.5758 0.7291 0.9161 0.9161 0.6597
txt-time-trnd 0.8155 0.5878 0.7380 0.9112 0.9112 0.6766
txt 0.6680 0.0205 0.5018 0.9988 0.0393 0.9812
txt-time 0.6759 0.4560 0.5111 0.9977 0.5252 0.9308

World txt-trnd 0.8198 0.6020 0.7489 0.9056 0.9056 0.6964
txt-time-trnd 0.8193 0.6014 0.7493 0.9039 0.9039 0.6975

Table 2.8: Prediction Results for different IP models

equation 2.10), we create four different versions of our model by throwing out one or more

components at a time and using the rest of the components to predict the influence of events

on user queries. Table 2.7 shows these different versions of IP model along with the com-

ponents it contains. For example, the “txt" method only contains the “TxtSim" component,

while “txt-trend" contains both “TxtSim" and “Trend" components, but does not incorporate

the “TmpSim" component. From now onwards, we refer to all the methods compared in this

chapter by the terminology introduced in table 2.7 to report the experimental results. All

results reported in this section used equation 3.1 as the “TxtSim" component. We also ex-

perimented with other text-similarity functions, e.g., TF-IDF cosine similarity; however, the

results turned out to be significantly poor (more than 10% relative difference in F-measure)
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as compared to using equation 3.1 [the details are omitted due to lack of space].

Table 2.8 shows the summary of the performance obtained by the four different versions

of “IP" model on the Trending event and Query-Log Dataset. For each method and event-

category, the table reports the F-measure (with corresponding Precision and Recall, i.e.,

Recall-f) and and K-measure (with corresponding Specificity and Recall, i.e., Recall-K).

Each result reported in Table 2.8 is the average of 25 runs using five-iterated-five-fold cross

validation, each time with a random initialization of the parameter set {λ0, α, β}. It is

evident that for all the categories of events, the “txt-time-trnd" method performs the best

in terms of both F-measure and K-measure. For example, in case of the category “Movies",

the “txt-time-trnd" method obtains a F-measure and K-measure value of 0.8087 and 0.5532

respectively, while the only textual similarity based method, i.e., “txt" achieves a F-measure

and K-measure value of 0.6667 and 0.2366 respectively.

Close observation of Table 2.8 reveals that, only textual similarity is not sufficient for

the influence prediction task as demonstrated by the relative poor performance of the “txt"

method. Adding the “TmpSim" component, i.e., “txt-time" improves the prediction accu-

racy, although not to a significant degree. However, adding the “Trend" component to the

“TxtSim" component results in a significant jump in the prediction accuracy (“txt-trnd"

method) which verifies that the “Trend" component is very important to detect the influ-

ence of events on user query submissions. For example, for the “US" category, “txt" obtains

a F-measure value of 0.6710 and “txt-time" obtains 0.7441, whereas, “txt-trnd" obtains a

F-measure value of 0.8120. Finally, combining all the three components, i.e., “txt-time-

trnd" achieves slightly better performance (F-measure 0.8155) than “txt-trnd" (F-measure

0.8120) signifying the fact that, once we have incorporated the “Trend" component, there

is little room for “TmpSim" to further improve the prediction performance. This verifies

our assumption that, “Trend" is an essential component for this kind of influence prediction

task.

Overall, these quantitative evaluation results show that the basic component techniques
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we proposed for modeling influence, i.e., text similarity, temporal similarity, and extended

Hawkes model, are all useful for the prediction task, suggesting that they indeed capture

useful signals for modeling the influence relation of events on user queries. It is especially

interesting to note that the modified Hawkes model provides a “trendiness” score that is

shown to be beneficial for the prediction task, suggesting that the model has indeed captured

the trend of influence well.

2.7 Conclusion and Future Work

In this chapter, we conducted the first study of how trending events influence search queries,

where we frame the problem as a novel data mining problem of joint mining of trending event

news data and search log data. We proposed a computational method to quantitatively

measure the influence of an event on a query and to discover queries triggered by the event.

Specifically, we proposed a novel extension of Hawkes process to model the evolutionary trend

of the influence of an event on search queries. Evaluation results show that our proposed

approach effectively identifies queries triggered by events and characterizes the influence

trend of different types of events.

Although we mainly applied the proposed model to the problem where we predict if a

query was triggered by an event, our model can be applied to many other problems. For

example, it can help query auto-completion by leveraging terms related to the triggering

event, and it can also improve search results by boosting documents that are relevant to the

event. In addition, analysis on different characteristics of the events can enable us accurately

detect more influential events. All of these interesting directions are left as future work.
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Chapter 3

Joint Influence Model for Information
Thirst

Previous chapter has shown that popular trending events are important external factors

which pose significant influence on user search behavior and also provided a way to compu-

tationally model this influence. However, the problem formulation in the previous chapter

was based on the strong assumption that each event poses its influence independently. This

assumption is unrealistic as there are many correlated events in the real world which influ-

ence each other and thus, would pose a joint influence on the user search behavior rather

than posing influence independently. In this chapter, I study this novel problem of Modeling

the Joint Influences posed by multiple correlated events on user’s information seeking be-

havior. I propose a Joint Influence Model based on the Multivariate Hawkes Process which

captures the inter-dependency among multiple events in terms of their influence upon user

search behavior. I evaluate the proposed Joint Influence Model using two months query-log

data from https://search.yahoo.com/. Experimental results show that the model can indeed

capture the temporal dynamics of the joint influence over time and also achieves superior

performance over different baseline methods when applied to various interesting application

tasks as well as real-word application scenarios, e.g., query auto-completion.

3.1 Introduction

Search Engine optimization has been a vastly studied research area in the past decade. One

key component of search engine optimization is analyzing the user search behavior in order

to better understand their information need. User search behavior has been studied from
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multiple perspectives, e.g., user’s own browsing history, click log analysis etc. Recently,

how various external factors influence the user search behavior has attracted increasing

attention [33]. One important type of external factor is the external events that “significantly”

attract the general mass. They trigger user’s thirst for information related to the event and

thus, pose influence on how the users search to fulfill their information need. How to model

the influence of such external events on user search behavior is the high level research question

we study in this chapter.

Figure 3.1: A toy example with three events e1, e2, e3. The circles, squares and dices represent
queries generated by the influence of event e1, e2 and e3 respectively.

The problem of modeling the influence of popular trending events on user search behav-

ior is not entirely new, specifically, this problem was introduced by Karmaker et.al. [33].

However, the problem definition provided in [33] was based on the strong assumption that

the influence posed by each event is independent of the other events, which clearly limits the

applicability of such solution to cases where there are multiple correlated events and these
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events pose a joint influence on individual user’s search pattern. To clearly motivate the

problem, let us start with the example in Figure 3.1, where we show three popular events

from the month of April, 2016. The first event (denoted by e1) is Donald Trump’s win in the

Indiana Primaries. The blue line below the event description represents the time dimension

and the “yellow” dots represent queries related to/triggered by the event e1. For example, the

query “Trump Indiana result" is clearly seeking information about Trump’s election results

for Indiana Primaries. Note that, the same query can be posed by multiple users at different

instants of time. Here, e1 is an influential event that has triggered a lot of user queries

related to that event. We call these triggered queries as Influenced queries. Similarly, event

e2, i.e., “Panama Papers Leaked” and event e3, i.e., “Hillary Clinton mocks Donald Trump

over not releasing tax returns” also trigger numerous queries from users asking for relevant

information about the respective event. A deeper thought would also reveal that some of

these events may be correlated and they may have a joint-influence on the generation of

some queries. For example, people searching for “Hillary Clintons mocking about Donald

Trump" might also be interested in information about Trump’s Indiana Primary Results

and vice-versa. Thus, mutual influence exist among events that jointly affect user search

behavior and this joint influence also evolves over time causing corresponding change in the

user search pattern. In this chapter, we model this evolution of joint influence posed by

multiple external events on the search behavior of users.

As mentioned in the previous paragraph, the major limitation of the previous work by

Karmaker et.al. [33] is the assumption that influence posed by one event is independent of

the other events. In this chapter, we relax this assumption by providing a new problem

formulation, i.e., modeling the joint influence posed by multiple events on user search be-

havior. Specifically, we introduce a new data mining problem, where, given a search query

log and a set of (correlated) events, the task is to mine both these datasets to infer the joint

influence posed by the provided set of (correlated) events on triggering queries from users.

This specifically means, beside measuring the influence of the primary event that triggered
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the query (lets call it Direct Influence), the task also requires to measure the influence of

secondary (correlated) events for the same (lets call it Indirect Influence). This is a new

problem because besides computing the degree of influence posed by each event, we also need

to come up with a way to compute how their influences are temporally correlated to each

other. The joint influence mining task naturally raises many associated interesting research

questions, including, how to come up with a numerical formula for measuring influence that

is comparable across multiple events (note that, the influence scores computed by Karmaker

et.al. [33] are not directly comparable across multiple events), how influence of multiple

events jointly evolve over time and how they correlate in the temporal dimension etc. (see

section 3.3 and section 3.5.2 for a detailed list of questions).

To solve the joint influence modeling task, we propose a novel mining algorithm based

on Multivariate Hawkes Process [45], which is a mutually exciting point process suitable for

modeling the frequencies of random events. The joint influence modeling approach proposed

by us has several benefits over the independent influence model proposed in [33]; first, it

relaxes the assumption that each event poses an influence that is independent of the other

events and thus can model real word scenarios better; second, it can capture the temporal

correlation of influences posed by two correlated events providing a way to categorize direct

influence versus indirect influence and thus can leverage this correlation to better model

the evolution of joint influence over time; third, it provides a formal way to measure the

influence of multiple events in a comparable numerical scale. Another beneficial feature of

the proposed method, as demonstrated by the experimental results (section 3.6), is that the

proposed joint influence model is fairly general and is widely applicable on various interesting

prediction tasks and search intent related applications (e.g., query suggestion, query auto-

completion) and obtains superior results in comparison to multiple baseline methods. The

core contributions of this chapter are listed below:

1. We introduce the novel problem of modeling the (temporal) dependency across multiple

events in terms of the influences posed by them on user search behavior. To the best of our
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knowledge, this problem has not been studied before.

2. We propose a Joint Influence Model based on Multivariate Hawkes Process which cap-

tures the joint-influence posed by multiple events on user search behavior as well as models

how this joint influence evolves over time.

3. We present efficient numerical techniques to compute the likelihood of any query log

data w.r.t. the proposed Joint Influence Model ; which provides us with a way to estimate

the optimal parameters of the model by maximizing the likelihood.

4. We evaluate the proposed Joint Influence Model using two months query-log data from

https://search.yahoo.com/. Experimental results show that the model can indeed capture

the temporal dynamics of the joint influences over time and can be applied to solve various

interesting prediction problems as well as real-word application scenarios, e.g., query auto-

completion.

3.2 Related Work

Search query logs have been extensively studied to understand user search behavior and

provide better search experience [28, 42, 72]. Existing work mostly focused on the inference

of users’ search intent based on their own search habit and search history. On the other hand,

our chapter tries to model how user behavior on a search engine is influenced by external

factors such as trending events.

Temporal Information Retrieval [11, 16, 7, 41] and Event Detection [4, 77, 67, 19, 3] are

two areas closely related to our work. While Event Detection has been studied vastly in the

literature (see [4] for a recent survey), research interest on Temporal Information Retrieval

has grown recently [11]. However, we emphasize that, neither of these is the intended goal

of this study and our primary motivation is somewhat orthogonal, i.e., given that some

(possibly multiple) events have already been reported, we go one step further to investigate
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how these events may jointly impact/influence the search behavior of the users.

The notion of event-based retrieval was introduced by Strötgen and Gertz [63] by return-

ing events instead of documents. Zhang et al. [75] addressed the detection of recurrent event

queries. Ghoreishi and Sun [22] introduced a binary classifier for detecting queries related

to popular events. Kanhabua [30] extended the work [22] by enabling the classifier to detect

less popular queries beside popular ones. However, all these approaches are supervised clas-

sification methods and largely depend on the quality of training labels provided by humans,

whereas our approach is unsupervised.

Kairam et. al. [29] investigated the online information dynamics surrounding trending

events, by performing joint analysis of large-scale search and social media activity. Matsub-

ara et. al. [48] presented a new model for mining large scale co-evolving online activities.

Pekhimenko et al. [53] designed a system named “PocketTrend" that automatically detects

trending topics in real time, identified the search content associated to the topics, and then

intelligently pushed this content to users’ local machine in a timely manner. However, none

of these studies provide answer to the question: how to model the evolution of joint influence

posed by multiple events on user search behavior, which is one of the primary motivations

of our work. The closest match to this chapter is the work by Karmaker et.al. [33] where

they first introduce the problem of modeling the influence of popular trending events on user

search behavior. However, as mentioned in section 3.1, their problem definition was based

on the unrealistic assumption that only one event can influence the triggering of a particular

query and the influences posed by multiple events are independent of each other. In this

chapter, our primary focus is to relax these assumptions and propose a more realistic model

to capture the joint influence of multiple events.

Another important topic related to this chapter is point process, which has been used to

model social networks [8] and natural events [78]. People find self-exciting point processes

naturally suitable to model continuous-time events where the occurrence of one event can

affect the likelihood of subsequent events in the future. One important self-exciting process
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is Hawkes process, which was first used to analyze earthquakes [78], and then widely applied

to many different areas, such as market modeling [20], crime modeling [62], conflict [73],

viral videos on the Web [15] etc. In this work, we propose a novel Joint Influence Model

based on multivariate Hawkes process [45] that can capture the dynamics of simultaneous

influence by multiple events on user search behavior.

3.3 Problem Formulation

Let, E = {e1, e2, ..., ek} be the set of all events for which we want to analyze their influence on

the user search behavior, where k is the total number of events under consideration and each

event ej is represented in terms of natural text (for details on the representation of an event,

refer to the work by Karmaker et.al. [33]). Also assume that, each ej is associated with a set

of queries that were generated from influence (“to some extent”) by the same event. Let this

set be denoted by Qj = {qj1, qj2, ....}. Each qji consists of a tuple <wji, tji, xji>, where, wji

is the query-text, tji is the timestamp of receiving the query and xji is a textual-similarity

score between event-text ej and query-text wji. The higher the similarity between ej and

wji, the higher the xji score is. For details on how we can get the query set Qj associated

with each event ej and how to compute xji for an event-query pair, please see [33]. We omit

the details here due to lack of space.

Given the input data mentioned above, our goal is to model the temporal dynamics of the

joint influence posed by different events in E on user search behavior. Specifically, we seek

answers to the following questions which were never investigated before: 1) Is there a way

to computationally model the dependency among different events in terms of the influences

posed by them on user search behavior? 2) How these (correlated) influences of multiple

events jointly evolve over time? 3) Given that we have seen a query which is triggered by

some event ej, how does that change the future influence of some event other than ej? 4)

Can we use the correlation among multiple events to distinguish between Direct Influence
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and Indirect Influence (defined in Section 3.1)? We also ask the same questions raised by

Karmaker et.al. [33], e.g., 5) How the textual similarity between an influential event and

an influenced query affects the influence trend of that event? 6) How long the influence of

different events last? To provide answers to these questions, we formally introduce a novel

Joint Influence Model based on Multivariate Hawkes Process, in the following section.

3.4 Joint Influence Model

We model the joint influence of multiple events on user search behavior through a generative

multivariate point process where each point corresponds to the submission of a new query

influenced by some event ej ∈ E. To be more specific, we propose a new generative model

based on Multivariate Hawkes Process (a specific mutually exciting point process) to describe

the generation of the influenced queries. This way of modeling query generation is beneficial

because this would also allow us to quantify the influence of different events on this generation

process at any instant of time. Multivariate Hawkes process is naturally suitable to our

problem scenario because it can model the frequencies of occurrences of multiple events in

the continuous time domain. For a detailed background on Multivariate Hawkes Process

and for further justification on why it is helpful, please refer to [45].

Let, Q = Q1 ∪ Q2 ∪ .... ∪ Qk, be the set of all query submissions which were influenced

by some event ej ∈ E. Additionally, let Qj be the set of all queries that were triggered by

the direct influence of event ej. One naive way to collect Qj corresponding to event ej is

to retrieve queries from the search log that are textually similar to event-text. For further

details on how to retrieve a good quality Qj for event ej, please refer to [33]. For modeling

the joint influence, we consider the union set, i.e., Q, where each query qi ∈ Q corresponds

to one point in the multivariate point process and is represented by the tuple <ti,di,xi>.

Here, ti is the timestamp of receiving the the query and thus, always ti > 0; di is the event

which influenced the generation of qi and thus, di can be any event ej, i.e., di ∈ E; xi is the
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textual-similarity score between event-text, text(di) and query-text, text(qi).

Given this setup, the core technical challenge in designing the Joint Influence Model

boils down to the problem of how we can formally define the multi-event influenced query

generation process; in other words, how to fully characterize the multivariate point process?

This is not trivial due to the abstractness in the concept of influence. We address this

challenge by introducing the notion of Influence Function, which we will discuss in detail in

the following section1:

3.4.1 The Influence Function

We characterize the multivariate point process by defining a set of continuous functions λj

for j = {1, 2, ...., k}, we call them Influence Functions, which represent the influence of each

event ej ∈ E on the generation of the queries in Q at any instant of time. Designing a suit-

able λ function is the main challenge towards building a reasonable Joint Influence Model.

However, defining influence is more of a philosophical question rather than a mathematical

one. With this constraint in mind, we adopt to define influence through different compo-

nents that the final influence function should accommodate and eventually, combine all these

components into a single influence function. We first start with various components of the

influence function λj.

Base Influence: We assume that there is always a non-negative influence posed by each

event ej ∈ E on the generation of the queries in Qj. Thus, each event ej is associated with

a constant ηj which governs the rate at which we expect to observe new queries influenced

by event ej. This gives our first set of parameters for the influence function, i.e., ηj ≥ 0

for j = {1, 2, ...., k}. In contrast, the independent influence model proposed by Karmaker

et.al. [33] (let’s call it IIM ), has only one parameter η for all events.
1All the codes and evaluation scripts for experimentation can be found at the following link:

(https://bitbucket.org/karmake2/influencemodeling/src/master/)
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Decay Functions: The decay functions characterize how the influence of each event dimin-

ishes over time. Thus, each event ej is associated with a decay function wj which decides

how fast the influence of the same event decays with time. Without loss of generality, we use

Exponential Decay functions for our Joint Influence Model. While other forms of the decay

function are certainly possible, the investigation of the choosing the right decay function is

orthogonal to the goal of this research. Mathematically, Exponential Decay Functions are

represented as the following:

wj(t) = αj exp(−αjt)

The corresponding cumulative decay function is the following (we will need this later):

w̄j(t) = 1− exp(−αjt)

In contrast, IIM [33] has one decay parameter w for all events.

Impact Functions: Whenever the search engine receives a query triggered by some event

ej, we assume that this newly received query increases the influence of all events (not only ej),

which in turn, increases the probability of receiving further queries influenced by different

events. The more we receive new (influenced) queries, the higher the influence of different

events become; yielding a higher probability of receiving more influenced queries in the

future. Thus, the influence of different events as well as frequency of influenced queries we

receive mutually grow together, which is similar to the idea of mutually exciting multivariate

point processes [25]. Note that, for some event (mostly uncorrelated events), the increment

of its influence can be zero which is also expected.

Given that we have received a new query qi (<ti,di,xi>) triggered by event di, the amount

by which the influences of different events increase depends on the textual-similarity score,
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i.e. xi, between the event-text and the query-text. This is intuitive because, highly relevant

queries are expected to have more impact on the change of influence than less relevant

queries. To capture this, we introduce a set of Impact Functions which govern how the

influence of all events change depending on the textual-similarity score between the newly

received query and its triggering event. Let us denote these Impact Functions by the notation

gdi(xi). The interpretation of gdi(xi) is as follows: assuming that the newly received query

qi was triggered by event di and the textual similarity between text(di) and text(qi) is xi,

the influences of all the events are then increased in proportion to gdi(xi).

Note that, reception of query qi increases the influences of all events by the same amount,

i.e., by gdi(xi): which is not desirable. To address this issue, we have a whole new set of

parameters, namely “Mutual-Influence Co-efficients" which we will discuss shortly after this.

However, the purpose of “Impact Functions” is solely to define how the influence of an event

changes based on the textual-similarity score between the newly received query qi and its

triggering event di.

Impact functions take the textual similarity score xi as an input parameter. The exact

form of Impact Function we choose would thus depend on the distribution of xi, let us call

it Intent-Match Distribution. Below we discuss the Intent-Match Distribution briefly, choose

a reasonable function for it and then choose the corresponding suitable Impact Function

.

Intent-Match Distribution: Intent-Match Distribution is essentially the distribution of

the textual-similarity score between the triggering event and the influenced query. For

textual-similarity score, we choose the following modified version of the BM25 introduced

in the work [33] (The details of this function and rationale behind choosing it can be found

in the paper [33] ). Let, WE =< WE1 ,WE2 , ...,WEn > be the “event-text” and Wq =<

Wq1 ,Wq2 , ...,Wqn > be the “query-text”. Then,
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xi(WE,Wq) =

|WE |∑
i=1

ω(WEi
).IDF (WEi

).TF (WEi
,Wq).(k1 + 1)

TF (WEi
,Wq) + k1.(1− b+ b. |Wq |

avgql
)

subject to
|WE |∑
i=1

ω(WEi
) = 1 (3.1)

Note that, the textual-similarity score xi is independent of the past history of received

queries and solely depends on the similarity between the “event-text" and the “query-text".

Further, xi ≥ 0.

To specify the Intent-Match Distribution, we hypothesize that a power law probability

distribution is the most suitable for our case because of the following reasoning: among

the set of all queries that are influenced by some event ej, very few queries would exactly

match with the details in the event-text, while a lot of queries intent would match the details

only partially or marginally (these are general exploratory queries). The higher the intent-

match, the rarer the frequency becomes; in fact, the frequency decreases exponentially with

the increase in textual-similarity. Our empirical evaluation also supports this hypothesis

(details in section 3.6.1).

Based on the argument presented above and without loss of generality, we select “Pareto

distribution" as our Intent-Match Distribution, which is a popular power law probability

distribution. “Pareto distribution" is defined on the half line [0,∞) and has two parameters

µ > 0 and ρ > 0. Each event ej is associated with a Intent-Match Distribution fj (“Pareto

distribution” in this case).

fj(x) =
ρjµ

ρj
j

(x+ µj)ρj+1
(3.2)

Under the restriction that ρj > 2, a suitable impact function is the following with pa-

rameters ρj ≥ 0, µj ≥ 0, φj ≥ 0, ψj ≥ 0 (Please see [45] for details and rationale) :
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gj(x) =
(ρj − 1)(ρj − 2)

φj(ρj − 1)(ρj − 2) + ψjµj(ρj − 2)
(φj + ψjx) (3.3)

Thus, each event ej is associated with a Intent-Match Distribution fj as well as an impact

function gj. In contrast, the IIM [33] has only one impact function g(x) for all events, which

was defined as g(x) = x; whereas, gdi(xi) is a generalization of that with more flexibility to

capture the impact.

Mutual-Influence Co-efficients: While the impact function captures the relationship

between the textual-similarity of an “influenced query-triggering event pair” and the corre-

sponding change in the influence of an event, it fails to distinguish the different impacts the

same query might pose for different events. For example, the submission of query “Trump

Indiana Results” should directly indicate an increasing influence of the event “Donald Trump

wins Indiana primaries” (This is the Direct Influence); however, the same query might have

little/no indication about the increasing influence of the event “Messi scores a hat-trick

against real madrid” (lets call it No Influence). At the same time, query “Trump Indiana

Results” might have an indirect indication about the increasing influence of the correlated

event “Hillary Clinton results for Iowa Primaries” (The is the Indirect Influence). Modeling

these inter-dependencies among multiple events in terms of the influence posed by them is

one of the central key questions we investigate in this chapter. Our proposed Joint Influ-

ence Model addresses this question by introducing a new set of Co-efficients, we call them

Mutual-Influence Co-efficients, which is a unique component of our proposed model.

To capture the three types of influences, i.e., Direct Influence, Indirect Influence, No

Influence as mentioned above; we introduce a k × k matrix of coefficients which we call the

Mutual-Influence Co-efficients.
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MIC =



ν11 ν12 ν13 . . . ν1k

ν21 ν22 ν23 . . . ν2k

. . . . . . . . . . .

νk1 νk2 νk3 . . . νkk



The diagonal elements of the matrix represent Direct Influence, while non-diagonal el-

ements represent Indirect Influence. We also impose the constraint, νji ≥ 0 for i, j =

{1, ...., k}. A zero value for any element in the MIC matrix represents No Influence, while

higher non-zero values indicate Significant Influence. Thus, the MIC matrix contains valu-

able information about the inter-dependencies among multiple external events in terms of

their influence on user search behavior.

Influence Function and Query Generation Process: So far, we have discussed all

the components we needed to define our influence function. Below we present the actual

definition of the influence function by combining all these components:

λj(t) = ηj +
k∑
j=1

νji

∫
(−∞,t)×R

wj(t− s)gj(x)ej(ds× dx) (3.4)

Now, we define the mutually-exciting query generation process:

Definition 3.4.1 (Mutually-Exciting Query Generation Process). Let us assume that, we

observe queries in the form of triples <ti,di,xi> for 1 ≤ i ≤ n, where ti ∈ [T∗, T
∗] and

ti > ti−1, di ∈ {1, 2, ...., k} and xi ∈ R+. For the i-th query, it occurs at timestamp ti,

the triggering event is di and the corresponding textual-similarity is xi. At any instant of

time t, each event ej for j = {1, 2, ....., k} has an influence λj defined by equation 3.4. This

constitutes our Generative Multivariate Hawkes Process.

For a Multivariate Hawkes Process to be well defined, we need the following two condi-

tions to be satisfied:
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1. The maximum of the Eigen Values of theMIC matrix is defined as the spectral radius

of MIC, i.e,

Spr(MIC) = max(eigenV alues(MIC)). Multivariate Hawkes Process requires the

following condition to satisfy:

Spr(MIC) < 1

2. The decay functions must satisfy the following constraints:

∫ ∞
0

twj(t)dt <∞

Finally, for computational feasibility, we present the numerical version of the continuous

influence function in equation 3.4 below. Let us assume that we have observed queries at

points {ti}, for 1 ≤ i ≤ n. Then, for any timestamp ti, the influence of event j, λj(ti) is

defined as:

λ̂j(ti) = ηj +
i−1∑
m=1

νj,dmw(ti − tm)gdm(xm) (3.5)

3.4.2 Estimation of the Optimal Parameters

This section presents the estimation techniques for the optimal parameter values of the influ-

ence function. For this purpose, we define the likelihood function for any observed sequence

of queries with respect to the proposed mutually exciting multivariate point process. We find

the optimal parameters by maximizing the likelihood of the observed query data. Specifi-

cally, the log-likelihood function corresponding to the Mutually-Exciting Query Generation

Process (see Definition 3.4.1) looks like the following:
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logL =
d∑
j=1

∫
[T∗,T ∗]×R

log λj(t)ej(dt× dx) +
k∑
j=1

∫
[T∗,T ∗]×R

log fj(x)ej(dt× dx)−
k∑
j=1

Λj(T
∗)

(3.6)

Here, T ∗ is the upper bound of the observation period and Λ̂j(T
∗) is called the compen-

sator function and is defined as follows:

Λj(t) = ηj(t− T∗) +
k∑

m=1

νjm

∫
(−∞,t)×R

[ŵj(t− u)− ŵj(T∗ − u)]gm(x)em(du× dx) (3.7)

Numerical Computation: For computational feasibility, we now present the way to nu-

merically compute the log-likelihood function defined in Eqn (3.6). Specifically, the numerical

version of the log-likelihood function takes the following form:

log L̂ =
n∑
i=1

log λ̂di(ti) +
n∑
i=1

log fdi(xi)−
k∑
j=1

Λ̂j(T
∗) (3.8)

While computation of fdi(xi) is straight-forward from equation 3.2, computation of λ̂di(ti)

and Λ̂j(T
∗) are more involved. Below we present the exact formulas to compute λ̂j(ti) and

Λ̂j(T
∗) omitting the derivation details due to lack of space. We assume exponential decay

function, i.e., wj = αj exp(−αjt), for the exact computational formula, while other forms of

decay functions are certainly possible.

λ̂j(ti) = ηj + [λj(ti−1)−ηj] exp[−αj(ti− ti−1)] +νj,di−1
gdi−1

(xi−1)αj exp[−αj(ti− ti−1)] (3.9)
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Λ̂j(T
∗) = ηj(T

∗ − T∗) +
n∑
i=1

νj,diw̄j(t
∗ − ti)gdi(xi) (3.10)

By plugging in equation 3.2, 3.9 and 3.10, we obtain the complete numerical version of

the log-likelihood function as follows:

log L̂=
n∑
i=1

log
{
ηj+[λj(ti−1−ηj)] exp[−αj(ti−ti−1)]+νj,di−1

gdi−1
(xi−1)αj exp[−αj(ti−ti−1)]

}
+

n∑
i=1

log

(
ρdiµ

ρdi
di

(x+ µdi)
ρdi+1

)
−

k∑
j=1

{
ηj(T

∗ − T∗) +
n∑
i=1

νj,diw̄j(t
∗ − ti)gdi(xi)

}
(3.11)

Here, gdi(xi) is defined by as:

gdi(x) =
(ρdi − 1)(ρdi − 2)

φj(ρdi − 1)(ρdi − 2) + ψdiµdi(ρdi − 2)
(φdi + ψdix)

Given the log-likelihood function in equation 3.11, the set of parameters associated with

it is the following:

Θ = {ηj, αj, νji, ρj, µj, φj, ψj} , where (1 ≤ i, j ≤ k) (3.12)

Incorporating L2 regularization, the optimization problem to find the optimal parameter

set Θ∗ is written as follows:

Θ∗ = arg max
Θ

(
log L̂(Θ)− ||Θ||

)
(3.13)

Here, ||Θ|| is the L-2 norm of the parameter vector Θ. One can use any non-linear

optimization method to solve this maximization problem. Nelder-Mead Simplex Method [23]

is one such popular optimization technique. Another useful approach is the Sequential Least

SQuares Programming (SLSQP) [9].
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3.5 Experimental Design

3.5.1 Data-set

Due to the absence of any readily available joint event-query dataset, we decided to create

one from two sets of available data-sets: one for popular events and one for user query

history. We call these two data sets Event dataset and Query-Log dataset respectively. The

following two paragraphs provide details about these two data-sets.

Event data-set: An obvious choice for a text data set describing events is news articles

(though other data such as social media might also be applicable). The NYTimes Developers

Network (thanks to them) provides a very useful api called “The Most Popular API" [2],

which automatically provides the url’s of the most e-mailed, most shared and most viewed

articles from NYTimes.com during the last month from the date of the issue of the query. We

chose to use this API because of two major benefits: 1) it automatically removes duplicate

articles, thus we don’t need to deal with cases where multiple articles are related to the same

event. 2) it only provides the most popular articles from NYTimes, thus the quality/accuracy

of the events represented by these articles is very high. Using this API, we collected the

most e-mailed, most shared and most viewed articles for the month: April, 2016. Each

article consists of a tuple <title-text, body-text, timestamp>. Among different categories of

news, we used four categories for our experiments: US (National Affairs), Movies, Sports

and World (International Affairs).

Query-Log data-set: To analyze the user queries contemporary to the articles in Event

data-set, we use the two-months (April and May, 2016) user query log data from the widely

used search engine at https://search.yahoo.com/. Each query submission q is represented

as a tuple <query-text, timestamp>. The two-months query log data contains 105, 925, 732

query submissions in total.

Query-Event Joint data-set: To create the Query-Event Joint data-set, for each arti-

cle ej in the Event data-set, we retrieved top relevant queries that have at least a similarity
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Section Total Avg. Avg. Total Avg.
# of Title Body # of Textual
events Length Length queries Sim.

Movies 25 18.88 458.08 193,282 2.49
Sports 15 19.53 508.4 616,449 2.48
US 18 20.38 487.77 204,926 1.99

World 11 18.18 438.81 22,197 1.96

Table 3.1: Description of Event-Query Joint Dataset

score of 1.25 (with respect to ej) according the textual similarity function in equation 3.1

and discarded the rest. This filtering step is reasonable because if the textual similarity is

very low (less than 1.25), we assume that there is no influence of ej on the query. This

process provides us with a set of influenced queries triggered by each event from the Event

data-set. The summary of this data-set is presented in Table 3.1.

3.5.2 Qualitative Evaluation of the Model

It is not possible to do a direct quantitative evaluation of the influence model due to the

lack of ground truth information. Thus, to evaluate the quality of the proposed Joint

Influence Model, we do a formal investigation of the optimal parameters learnt through the

optimization process as described in section 3.4.2. Below, we present the specific research

questions we ask to evaluate the model quality and provide the roadmap of how we can

answer each question.

Research Questions:

1. Is the “Query Generation Process” well-defined ?

The “Query Generation Process” is well defined only if the Spectral Radius of the Mutual-

Influence Coefficient Matrix is less than 1, i.e, Spr(MIC) < 1. [see section 3.4.1 for more

details]

2. How to compare influences posed by different events?

We can answer this question by computing average influence posed by each event and then
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compare them. The average influence vector where each element is the average influence

of the corresponding event can be obtained using the following formula: (1k −MIC)−1η,

where, 1k is a k × k identity matrix.

3. How to compare Direct Vs Indirect influence ?

The diagonal elements of matrix MIC represent the Direct Influence, whereas, the non-

diagonal elements present Indirect Influence. We can do direct numeric comparison here.

4. How to measure the influence longevity of an event?

The α parameter defines how fast the influence of any event decays over time. Higher

values of α denotes a faster decay.

5. Is “Pareto Dist." suitable for “Intent Match Dist."?

To answer this question, we look at the empirical distribution of “Intent Match" score

between event-text and query text and verify whether “Pareto Distribution" is a good

match for it.

6. How well the Model fit the original data?

This question can be answered by jointly plotting the simulated influence of an event and

the actual frequency of queries generated by that event over the same period of time and

see if the trend of the simulated influence is similar to the trend of the actual frequency of

generated queries.

3.5.3 Applications and Quantitative Evaluation

In this section, we demonstrate the wide applicability of the proposed “Joint Influence Model”

by demonstrating how the model could be used to solve various interesting prediction prob-

lems as well as real-world problems associated with search engine systems. Another benefit

of these experiments is to conduct indirect quantitative evaluation of the Joint Influence

Model as direct evaluation is impossible due to the lack of ground truth data for influence
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which is an abstract concept. The primary purpose of these experiments is to see if model-

ing the influence inter-dependencies among multiple events actually help us achieve better

performance in real life application scenarios. To achieve these goals, we present a set of

prediction tasks / application scenarios and provide a roadmap on how we can adopt the

“Joint Influence Model’ to solve these tasks.

Application Tasks:

1. Predict the most influential event in the future:

We assume the influence of an event in the current hour is proportional to the frequency of

queries generated by it in the next hour. Thus, the event with the highest influence score

in the current hour is predicted to be the event that generates highest number queries in

the next hour. We then compare this predicted most influential event with the actual most

influential event (computed from the original query log) and based on that, we can report

the accuracy of the prediction for a separate held-out testing set.

2. Rank multiple events based on their future influences:

This prediction problem is similar to previous prediction problem, except that, now we want

to predict the ranking of events in terms of their future influence instead of just predicting

the future top influential event. Again, we use the current hour influence scores to predict

the next hour’s generated query frequencies and rank the events accordingly. To evaluate

the quality of the ranking, we compare the predicted ranking against the actual ranking

obtained from the query log and compute two different popular ranking evaluation metrics:

i.e, NDCG [70] and Rank Biased Overlap (RBO) [71].

3. Predict the most frequent query in the future:

This prediction problem is the same as the prediction problem in (1) except that now we
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want to predict the most frequent query in the future instead of the most influential event.

For this prediction task, we use a slightly modified version of the original “Joint Influence

Model” where apart from computing the evolving influence at the event level, we also com-

pute the evolving influence at the query level. The basic idea is to break each event-level

influence into smaller units where each unit would correspond to the query level. We omit

the full details of process due to lack of space.

4. Rank queries based on their future frequencies:

This prediction problem is similar to the prediction problem in (2) except that now we

want to rank queries instead of events. Again we report NDCG [70] and Rank Biased

Overlap(RBO) [71] to evaluate the quality of the predicted ranking.

5. Solve a real world application problem, e.g., query auto completion task:

Finally, we select Query Auto Completion as a goal task and use our proposed “Joint In-

fluence Model” to solve it. Specifically, for a new query from the testing set, we look at the

first word and try to predict the exact query based on the latest available influence scores

of all the queries starting with the first word. Based on these influence scores, we rank the

potential queries and then, compute the reciprocal rank of the actual query in the predicted

ranked list. We repeat the whole process for all the queries in a separate held-out testing

set and report the mean reciprocal rank (MRR) [66], which is the most popular evaluation

metric used in measuring the performance of query auto completion tasks.

Baseline Methods: For all the quantitative evaluation tasks, we compare the proposed

Joint Influence Model against the obvious baseline method, i.e., Independent Influence Model

(We call it “IIM") introduced in [33]. If the Joint Influence Model( JIM ) performs better

than IIM, we can conclude that capturing inter-dependencies is indeed useful and can help us
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Acronym Method
NF Naive Frequency
AR Auto Regression [12]
ARD Auto Regression with difference [12]
VAR Vector Auto Regression [10]
IIM Independent Influence Model [33]
JIM Joint Influence Model

JIM-G Joint Influence Model-Generalized

Table 3.2: Methods Compared for Quantitative Evaluation

achieve superior performance in real life applications. Additionally, as all these quantitative

evaluation tasks are some kind of forecasting problems, we also use some popular time se-

ries prediction methods as the baselines including Autoregressive Models (AR), Vector Auto

Regression (VAR) etc. Note that, our primary focus is not the quantitative evaluation,

rather demonstrating the usefulness of capturing influence inter-dependencies among differ-

ent events. Thus, experimenting with many different forecasting methods is an orthogonal

direction with respect to our focus which we do not explore in this work. We also include the

simplest baseline method Naive Frequency (NF), where the current hour’s frequency is used

to predict the next hour’s frequency. Table 3.2 lists down all the methods we experimented

and also provides with an acronym for each method for notational convenience. JIM is the

“Joint Influence Model" proposed in this chapter, whereas, “JIM-G" is a minor variation of

“JIM" with the constraint that events share the same α, i.e., the decay parameter.

3.6 Results

3.6.1 Qualitative Evaluation of the Model

First, we do a qualitative investigation of the optimal parameters learnt through the opti-

mization process as described in section 3.4.2. Table 3.3 presents these learnt parameters.

While the individual numbers in Table 3.3 are not very meaningful, the comparison across
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parameter η α ρ µ φ ψ
Movies 0.1961 0.8697 4.9706 3.0197 0.4542 0.1644
Sports 0.317 1.1999 6.2745 4.2272 1.1608 0.5304
US 0.2328 1.0999 6.3056 1.777 0.6962 0.508

World 0.074 0.677 3.9747 1.5226 0.2465 0.1685

Table 3.3: Parameters learnt for different categories of events

Movies (0.9319) Sports (0.9649) US (0.9192) World (0.9213)

Table 3.4: Spectral Radius of MIC Mat. for different categories

different categories of events is quite interesting. For example, η for “Sports" category

(0.3170) is generally much higher than that for “World" category (0.0740), suggesting that

the general interest in “Sports" events is much higher than “World" events among the com-

mon mass. Another interesting parameter is α, which indicates the longevity of influence for

different categories of events. According to Table 3.3, “World" events (α = 0.6770) usually

have a longer lasting influence compared to “Sports" events (α = 1.1999). Next, we move

onto providing answers to the specific research questions asked in section 3.5.2, sequentially

one at a time.

Is the “Query Generation Process” well defined?

Table 3.4 shows the spectral radius of Mutual-Influence Co-efficient Matrix obtained for

different categories of events. It is evident that, all the numbers are less than 1. Thus, we

conclude that, the “Query generation process” is indeed well defined.

How to compare influences posed by different events?

Table 3.5 reports the top 2 influential events from each category along with their average

influence score computed by the formula presented in section 3.5.2. For example, the movie

“Captain America: Civil War" was found to be the most influential event in the “Movies"
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Sections
Events Movies Sports

1 Movie: “Captain America: Civil
War” (11.5514)

Horse-Racing: Kentucky Derby
(13.5346)

2 Movie: “X-men: Apocalypse”
(2.0532)

Basketball: Stephen Curry
(6.6432)

Sections
US World

1 Donald trump Vs Hillary Clinton
(14.0117)

Panama Papers Released (0.8179)

2 Las Vegas Squatters Housing Col-
lapse (9.6340)

Philippine Presidential Race (
0.5821)

Table 3.5: Top two most influential events from four different Categories

Category with an average influence score of 11.5514, while “Donald trump Vs Hillary Clinton"

was found to be the most influential event (average score 14.0117) in the “US" category.

Manual inspection reveals that all these reported influential events are indeed popular events

which match with our intuition.

How to compare Direct Vs Indirect influence ?

Table 3.6 reports the average of the diagonal elements (Direct Influence) as well as the non-

diagonal elements (Indirect Influence) of the MIC matrix for each category of events. It is

evident that the influence posed by the triggering event, i.e., Direct Influence is significantly

larger than that of a non-triggering event, i.e., Indirect Influence which also concur with our

expectation. For example, Direct Influence (0.6342) of events in the “US" category is much

higher than the Indirect Influence (0.0201) in the same category. In fact, this observation

holds for any category.

How to measure the influence longevity of an event?

Direct inspection of α values from Table 3.3 can provide answer to this question. For exam-

ple, Table 3.3 suggests that “Sports" events generally have short term influence (α = 1.1999
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Influence Movies Sports US World
Direct 0.5285 0.6495 0.6342 0.5798
Indirect 0.0255 0.0165 0.0201 0.0166

Table 3.6: Direct Influence Vs Indirect Influence

), while “World" events have comparatively long lasting influence (α = 0.6770 ).

Is “Pareto Dist." suitable for “Intent Match Dist."?

To answer this question, we show the plot for the empirical distribution of “Intent Match"

score between event-text and query-text for the events of “Sports" category in Figure 3.2.

This figure demonstrates that as the “Intent Match" score goes high, the number of queries

with corresponding score becomes exponentially smaller, suggesting that, indeed “Pareto

Distribution" is a reasonable candidate for the “Intent Match Distribution".

Figure 3.2: Intent Match Distribution for category “Sports”

How well the Model fits the original data?

We plot the the simulated influence of the event “release of movie Captain America: Civil
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War" from the “Movies" category along with the actual frequency of queries generated by

that event during the same span of time (hour 1500 to hour 1700) in Figure 3.3. It is clearly

evident that the simulated influence can indeed capture the trend of the actual frequency

of generated queries and thus, we conclude that the model can indeed capture the influence

trend with a decent accuracy.

Figure 3.3: Demonstration of the goodness of fit for the event “release of movie Captain
America: Civil War"

3.6.2 Applications and Quantitative Evaluation

This section presents the quantitative evaluation results for the five different application tasks

presented in section 3.5.3, namely, Predict the most influential event in the future [Table 3.7],

Rank multiple events based on their future influences [Table 3.8], Predict the most frequent

query in the future [Table 3.9], Rank queries based on their future frequencies [Table 3.10],

Solve a real world application problem, e.g., query auto completion task [Table 3.11]. General

inspection of Table[3.7-3.11] reveals that, “JIM-G" is found to be the most robust method for
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all these different application tasks by obtaining the highest number for performance metrics

most of the time. For example, for the task “Predict the most influential event in the future"

[Table 3.7], “JIM-G" is found to achieve the highest accuracy for all four categories of events.

For the “Query auto completion task", the mean reciprocal rank for “JIM-G" is found to be

the highest for all categories except the category “World", for which “IIM" obtains a slightly

better number.

In case of event level predictions (Table 3.7 and 3.8), JIM turns out to be the second

best performing method. This suggests that the Joint Influence Model indeed captures

useful information which results in its superior performance over other baseline methods.

The superiority of “JIM-G" over “JIM" may be explained by the fact that, while “JIM" has

more parameters for α (i.e., one α for each single event) than “JIM-G" (i.e., single α for all

events), “JIM" might be suffering from over-fitting the training data while “JIM-G" would

learn a more general model suitable across multiple events. This over-fitting problem seems

more prominent for query level predictions (Table 3.9 and 3.10), especially for category

“World" where the number of queries in the dataset is comparatively very small (Table 3.1).

Here, “JIM" cannot even achieve the second best performance. We believe this is due to

the sparsity of query level data. Interestingly, the simple baseline “NF", achieves quite good

result at the query level prediction problems, while “VAR" suffers severely from overfitting.

However, “JIM-G" still performs the best for most of the cases in query level predictions.

In summary, Table[3.7-3.11] suggest that the Joint Influence Model is quite robust and

useful in many different applications with superior performance over a number of reasonable

baseline methods.

3.7 Conclusion

The assumption that each popular event poses influence upon user search behavior indepen-

dently is unrealistic as many real world events are closely related to each other. The primary
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Metric Methods Movies Sports US World
NF 0.6638 0.6647 0.9302 0.5073
AR 0.7256 0.6818 0.8959 0.3934
ARD 0.7445 0.4249 0.9388 0.0609

Accuracy VAR 0.7399 0.4997 0.5105 0.1237
IIM 0.7193 0.6162 0.9376 0.56712

JIM 0.75202 0.69382 0.94912 0.5307
JIM-G 0.75311 0.69671 0.95421 0.59051

Table 3.7: Predicting the most influential event in future

Metric Methods Movies Sports US World
NF 0.9074 0.9105 0.9792 0.7798
AR 0.9370 0.9168 0.9460 0.6951
ARD 0.8604 0.7458 0.9529 0.4358

NDCG VAR 0.8831 0.7914 0.8950 0.5175
IIM 0.9348 0.8975 0.9831 0.83932

JIM 0.94852 0.92782 0.98702 0.8275
JIM-G 0.95081 0.93221 0.98791 0.85171

NF 0.6596 0.6800 0.8573 0.5140
AR 0.7052 0.6821 0.7695 0.3967
ARD 0.5320 0.4122 0.7267 0.0942

RBO VAR 0.5752 0.4808 0.6331 0.1647
IIM 0.6961 0.6479 0.8597 0.59922

JIM 0.71942 0.69802 0.86722 0.5623
JIM-G 0.72521 0.70691 0.87051 0.60871

Table 3.8: Predicting future influences of multiple events (Wilcoxon’s signed rank test at
level 0.05)

Metric Methods Movies Sports US World
NF 0.3281 0.48942 0.57172 0.3879
AR 0.38791 0.4794 0.5400 0.4504
ARD 0.2424 0.1965 0.4410 0.0443

Accuracy VAR 0.0023 0.0007 0.0029 0.0001
IIM 0.3413 0.3660 0.5408 0.47101

JIM 0.3642 0.4688 0.5563 0.3035
JIM-G 0.38202 0.51341 0.58431 0.45442

Table 3.9: Predicting the most frequent query in future
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Metric Method Movies Sports US World
NF 0.5914 0.6693 0.8060 0.4465
AR 0.67132 0.74402 0.7789 0.5200
ARD 0.2642 0.2977 0.4717 0.0827

NDCG VAR 0.0087 0.0052 0.0136 0.0015
IIM 0.6355 0.6976 0.81212 0.65551

JIM 0.6484 0.7204 0.8022 0.4809
JIM-G 0.68701 0.76501 0.84301 0.60622

NF 0.4349 0.5707 0.6491 0.3665
AR 0.49472 0.59082 0.6102 0.4130
ARD 0.1803 0.2191 0.3237 0.0538

RBO VAR 0.0042 0.0019 0.0045 0.0001
IIM 0.4562 0.5174 0.65092 0.46761

JIM 0.4782 0.5724 0.6436 0.3048
JIM-G 0.50591 0.61721 0.67641 0.43322

Table 3.10: Predicting future frequencies for multiple queries. (Wilcoxon’s signed rank test
at level 0.05)

Metric Methods Movies Sports US World
NF 0.6427 0.8427 0.8489 0.6899
AR 0.7382 0.9129 0.8339 0.7471
ARD 0.2842 0.4077 0.5238 0.2754

MRR VAR 0.1911 0.1722 0.1186 0.3696
IIM 0.7839 0.9171 0.8896 0.92621

JIM 0.80822 0.95092 0.89032 0.8999
JIM-G 0.82261 0.95561 0.89881 0.91932

Table 3.11: Query Auto-Completion Results: MRR reported. (Wilcoxon’s signed rank test
at level 0.05)
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contribution of this chapter is to relax this unrealistic assumption made in the previous work

by proposing a Joint Influence Model based on multivariate Hawkes Process that captures

the inter-dependency of multiple events in terms of the influence posed by them upon user

search behavior. Experimental results demonstrate that the proposed method not only ef-

fectively capture the temporal dynamics of joint influences by multiple events, but also when

applied to various application tasks, achieves superior performance most of the time over

different baseline methods that do not consider this mutual-influence among multiple events.

This signifies that the mutual influence which exists among multiple correlated events is an

important factor which should be considered while designing such influence models.

68



Chapter 4

Influence Models for User Generated
Contents

User generated contents are often significantly influenced by the community to which the

user belongs to. While some work has been done on mining such influence from structured

information networks, little attention has been paid on how to mine community-influence

from user generated unstructured data. In this paper, we introduce and study the problem of

modeling community-influence on user generated unstructured contents, particularly in the

context of text content generation. Although text generation has recently became a popular

research topic after the surge of deep learning techniques, existing methods do not consider

community-influence factor into the generation process and thus, the process does not evolve

over time. This clearly limits their application on text stream data as most text stream data

often evolve over time showing distinct patterns corresponding to the shifting interests of the

target community. Thus, it is compelling to propose an Influenced Text Generation (ITG)

Process that can capture this evolution of text generation process corresponding to evolving

community-influence over time. In this paper, we propose a deep learning architecture based

Influenced Text Generation Process to address this challenge. Experimental results with six

different text stream data comprised of conference paper titles show that the proposed ITG

method is really effective in capturing the influences posed by different research communities

on paper titles generated by the researchers.
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4.1 Introduction and Motivation

A crucial component of any intelligent system is to understand and predict the behavior of

its users. A correct model of the user behavior enables the system to perform effectively to

better serve the users need. User’s behavior is often significantly influenced by the community

to which they belong to. Community-Influence on user behavior are mostly reflected in two

different ways: 1) Through significant growth of users’ thirst about information related to the

community and 2) Through the user generated contents that are directly/indirectly related

to the community. While some work have been done on modeling user’s information thirst

that are influenced by their community of interest [33, 32] , little attention has been paid to

how related communities influence their users in terms of generating contents. In this paper,

we introduce and study the problem of modeling community-influence on user generated

unstructured contents, particularly in the context of text content generation.

Automated text generation has become a popular research topic recently after the upsurge

of deep learning techniques [18, 39, 36, 56]. Recurrent neural networks, specially, Long-

Short-Term-Memory (LSTM) has shown to be promising to solve various text generation

tasks [47]. However, one common limitation with the existing text generation techniques is

that most of them are static generation processes, i.e., they assume that the generated text

data has no notion of time. Existing methods also do not consider community-influence factor

into the generation process and thus, the process does not evolve over time. This clearly

limits their application on text stream data as most text stream data often evolve over time

showing distinct patterns corresponding to the shifting interests of the target community.

For example, think about the titles of research papers published by a popular conference

(e.g. KDD) over many years. The paper titles that appeared in KDD 2001 are significantly

different from the titles that appeared in KDD 2015. This is due to the evolution of research

interests that took place during these years within the research community. The same is

true with user generated contents across different social media, e.g., Twitter, where many
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users share and talk about different popular stories related to their community of interest

as time passes by. Existing text generation techniques are unable to take such evolving

community-influence into account and thus, cannot capture these evolution of patterns in

text stream data. This evolving nature of the text stream data thus demands for a more

dynamic text generation process.

In this paper, we propose a novel Influenced Text Generation (ITG) process built upon

recurrent neural network based deep learning architecture that incorporates community-

influence to model the generation of dynamically evolving text stream data. The difference

between normal text data and text stream data is that every piece of generated text in the

text stream data is associated with a timestamp. Thus, one input to the ITG process is

the timestamp for which we want to generate text. We also assume that the distributions

of words corresponding to text data from two different timestamps are somewhat different

which explain the evolution of topics in the stream data. Modeling the generation of text

stream data is a hard problem due to the following three challenges that need to be addressed

simultaneously: 1) The model should learn to generate syntactically correctly sentences, 2)

The model should generate semantically coherent sentences and 3) More importantly, the

model should generate sentences which is time-sensitive and aligned with the evolution of

the text stream and reflect the dynamics of community-influence on the generated text data.

To demonstrate the three challenges more clearly, let us think about the task of generating

a KDD-2016 like paper title. First, the sentence must be syntactically correct: “Privacy

preserving Class Ratio Estimation" is a good example of syntactically correct sentence,

while “Preserving Ratio Class Estimation Privacy" is not. Second, the sentence should be

semantically coherent: “Hidden Markov Models for sequence Modeling" is a good example

of semantically coherent sentence, however, “Hidden Markov Models for Polygon cutting"

may not be so semantically coherent because Polygon cutting is neither related to Hidden

Markov Models nor Data mining in general. Finally, the model needs to generate sentences

relevant to the input timestamp: for example, while “Solving regression problems with rule-
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based ensemble classifiers" is both syntactically correct and semantically coherent, regression

problems and rule-based classifiers are somewhat old research topics mostly popular during

the 90’s. A more relevant title to KDD-2016 would be “Deep Visual-Semantic Hashing

for Cross-Modal Retrieval" as deep learning gained much popularity among the mining

community recently.

To address the three challenges mentioned above, our proposed ITG process is comprised

of three basic components that interacts with each other to model the generation of text

stream data. The first component is the Sequence Generator which ensures that ITG gen-

erates syntactically correct sentences. The second component is the Topic Generator which

captures the trends of different topics of interest within the community. Finally, the third

component is the Influence Generator which ensures that ITG can compute the community-

influence corresponding to the input timestamp and incorporate it into the generation process

to ensure that the generated text is consistent with that particular timestamp. ITG process

combines these three essential components into a single unified model and learns all their

optimal parameter values by mining a training corpus of the target text stream data.

The proposed ITG method has three major advantages over the existing static text

generation methods available in the literature. They are briefly mentioned below:

• Time sensitive Text Generation: ITG understands the notion of time and can

generate text which is relevant to a particular timestamp.

• Capturing Community-Influence: ITG can capture the evolution of interests hap-

pening inside the target community and adapt the text generation process accordingly.

• Chronological Summary Generation of Past Text Stream: ITG provides us with

a way to generate a chronological summary of the past text stream, i.e., it can summarize

how sentences from a particular text stream evolved over time in the past.

We conducted comprehensive experiments with six different sets of publication stream

datasets to demonstrate the power of ITG. These datasets contain titles of the papers pub-
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lished in different machine learning theory and applied machine learning conferences over 20

years, which were collected from the Open Academic Graph. For quantitative evaluation,

we compared ITG against multiple baseline methods for Chronological Summary Generation

task. Experimental results show that ITG achieves superior performance over the other base-

line methods by a clear margin in almost all cases. This confirms that ITG process is fairly

general and can effectively capture the evolution of community-influence while generating

text. We also found that incorporating influences from external correlated communities can

further enhance ITG’s performance. In summary, we make the following contributions in

this paper:

1. We study the problem of modeling community-influence on user generated text contents.

To the best of our knowledge, this problem has not been studied before.

2. We propose a Influenced Text Generation (ITG) process built upon recurrent neural

network based architecture which can capture evolving community-influence to explain the

generation of text stream data.

3. We demonstrate how ITG can be applied to an interesting text mining application,

i.e., Chronological Summary Generation of Past Text Stream. Through comprehensive

experiments with six different text stream datasets, we show that ITG achieves superior

performance over multiple baseline methods for this task. We also show that incorporating

influences from external correlated communities can further enhance the performance of

ITG.

4.2 ITG - Influenced Text Generation

In this section, we present the details about how Influenced Text Generation (ITG) Process

models the generation of text stream data. We assume that each piece of generated text

in the stream is associated with a discrete timestamp, where, the definition of timestamp
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varies across different types of data. For example, for conference paper titles, a reasonable

discrete timestamp is the year in which the paper is published, whereas, for a news headline,

a more reasonable discrete timestamp is the actual date when the news was broadcast. We

also assume that the text data across different timestamps are generated by sampling words

from different distributions, i.e., each timestamp is associated with a unique distribution of

n-grams, which is essentially the key to capture the evolution of community-influence on

text generation. ITG explains this evolution over a time period through the variance in the

word distributions across different timestamps.

Below, we first discuss briefly the three major components that are the building blocks

of ITG and then present how ITG combines them into a single unified model.

4.2.1 Sequence Generator

Sequence Generator is the central component of ITG which generates the next word xt in

the sentence given t− 1 previous words. Thus, Sequence Generator is essentially a language

model which provides a probability distribution over a sequence of words that can be used

to predict the next word in the sequence. Any sequence modeling framework, e.g., Hidden

Markov Models, Recurrent Neural Networks etc. can work as a sequence generator. For

ITG, we chose recurrent neural network with LSTM cells as the Sequence Generator due

to its recent promising results obtained for language modeling tasks [39, 37]. Given the

previous t words, i.e., x1:t, the recurrent neural network based language models compute the

conditional probability for the next word yt = i for i ∈ V , the vocabulary set, by computing

a hidden state ht and passing it through a Softmax function:

P (yt = i|x1:t) ≡ P (yt = i|ht) (4.1)

P (yt|ht) ∝ exp(WΩht +BΩ) (4.2)

ht = Ω(ht−1, xt) (4.3)
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Here, Ω can be a standard RNN cell or more complicated cell like LSTM, GRU etc.

Output at timestamp t, i.e., yt is fed as input for timestamp t + 1, thus, xt+1 = yt. Note

that, the small t notation means the timestamp associated with the word positions. It has

nothing to do with the evolution of text stream data over a time period, for which, we use

the big T notation (see section 4.2.2).

4.2.2 Topic Generator

The next component of ITG is the Topic Generator. The primary purpose of this component

is to analyze different topics across the text stream data and compute the evolution of topic

distributions within the community over time. It takes all past text stream data as input

and applies a probabilistic topic model to infer n (a user defined parameter) different topics,

each represented with a unique distribution over the entire vocabulary. For ITG, we chose

LDA as the Topic Generator since it has been the most popular topic modeling technique

for more than a decade. Once n topics are identified, the Topic Generator computes the

distribution of n topics over different timestamps observed in the training data. For this

notion of timestamp that corresponds to the physical generation time of text, we use the

big T notation which is completely different from the small t notation in the Sequence

Generator. We distinguish big T notation by naming it global timestamp as opposite to

the local timestamp t. For each global timestamp T , the Topic Generator computes a topic

distribution θT .

The Topic Generator also provides a sub-component, i.e., History Extractor, which, given

a particular global timestamp T as input, retrieves the topic distributions of previous r (a

user defined parameter) timestamps computed by LDA. We mathematically denote the out-

put of History Extractor by θT−r:T−1, where, θi:j denotes topic distributions from timestamp

i to j augmented into a single vector. This means the cardinality of vector θT−r:T−1 is r×n.
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4.2.3 Influence Generator

The main function of the Influence Generator is to compute the community-influence during

the text generation process. Given a particular global timestamp T , we represent community-

influence through a real valued vector (γT ) of dimension K (another user defined parameter),

which is essentially the output of Influence Generator. The input to the Influence Generator

is the r×n dimensional vector of topic distributions from previous r timestamp, i.e., θT−r:T−1

(assuming T as the current global timestamp). Thus, Influence Generator essentially maps

a r× n dimensional topic vector to a K dimensional influence vector. Here, we assume that

the influence vector γT corresponding to current timestamp T , can be approximated from

the historical topic distribution θT−r:T−1. This assumption is reasonable, because most text

stream data do not evolve dramatically over night, rather their topical shift happens quite

gradually. Think about some particular research community like SIGKDD. The topic dis-

tribution in papers published in a particular year is not dramatically different from previous

two years, rather they are somewhat correlated.

ITG maps topic-distribution-history vector (described in the previous paragraph) to an

influence vector through a feed-forward neural network. Although any function that can

perform this mapping can resemble as Influence Generator, we chose a feed-forward neural

network for ITG due to its capability of approximating a wide family of functions. Without

loss of generality, we used ReLU activation units in the hidden layers. Once the influence

vector (γT ) is computed, it is then injected as a bias into the Sequence Generator when

generating the next word (xt) in the sequence (More details in section 4.2.4). Influence

Generator is the component which enables ITG to generate text tied to a particular global

timestamp. Thus, Influence Generator is a pivotal component in ITG which makes influence-

aware text generation possible.

Mathematically, let θT denote the topic distribution for the generated text at timestamp

T , then the function of Influence Generator is expressed as follows (‖ means the concatena-
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tion operation):

θT−r:T−1 = θT−r‖θT−r+1‖....‖θT−1 (4.4)

γT = Γ(θT−r:T−1) = W Γ
2 ·
[
ReLU(W Γ

1 · θT−r:T−1 +BΓ
1 )
]

+BΓ
2 (4.5)

4.2.4 ITG as a Unified Model

Now that we have presented the three building blocks of ITG, this section presents how

these different components interact with each other and work as a unified model to explain

the evolution of text stream data corresponding to the fluctuation of community-influence.

ITG process can be thought of as generating text corresponding to a particular timestamp

T . Thus, the whole process starts with a timestamp T as input and the start-of-sentence

marker (let’s call it #) as the sequence generated so far. The next task is to generate one

word at a time iteratively until the end-of-sentence marker is generated (let’s call it *). The

exact process of generating the next word yt in the sequence is demonstrated in Figure 4.1.

The first step of the generation process is to infer n different topics from the historical

text stream and compute the topic distribution for each unique timestamp observed in the

training data. Next, given a particular global timestamp T as input, the History Extractor

Module extracts the historical topic distributions corresponding to previous r global times-

tamps and concatenates them to generate a vector representation of the history, i.e., θT−r:T−1

of dimension r × n (please see the previous subsection for details). θT−r:T−1 is then passed

through Influence Generator Γ which outputs the K dimensional influence vector γT . For a

particular global timestamp T , γT is fixed and can be re-used for any text generation task

tied to the global timestamp T . The bottom middle section (Green Color) of Figure 4.1

shows the feed-forward neural network architecture of Influence Generator.

The next trick in ITG is to concatenate the influence vector (γT ) to the vector rep-

resentation of each word in the sequence generated so far. This means, for each word in
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Figure 4.1: Influenced Text Generation (ITG): Compact Form

{x1, x2, ..., xt}, γT is concatenated to each of their vector representations to get the aug-

mented representation {xC1 , xC2 , ..., xCt }, i.e., while generating the next word xt+1 = yt in

the sequence, all the previous words in the sequence share the same community-influence

represented by vector γT . This augmented representation essentially allows ITG to capture

the dynamic nature of text stream data as the influence vector injects evolving community-

influence into the generation process. Finally, the augmented representations {xC1 , xC2 , ..., xCt }

are fed into the recurrent neural network model to compute a hidden state ht . The final

output vector Y is computed by applying a linear transformation on ht. Note that, vector

Y is a real-valued vector. We apply a Softmax function on Y to convert it into a valid

probability distribution, sampling from which, the next word in the sequence is generated.
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The mathematical formulas behind the entire generation process is summarized below:

Y = WΩ · ht +BΩ, (4.6)

ht = Ω(ht−1, x
C
t ), (4.7)

xCt = xt‖γT . (4.8)

Thus, Y can be written as follows:

Y = WΩ · Ω(ht−1, xt‖γT ) +BΩ. (4.9)

Here, γT is obtained as follows:

γT = W Γ
2 ·
[
ReLU(W Γ

1 · θT−r:T−1 +BΓ
1 )
]

+BΓ
2 . (4.10)

Here, θT−r:T−1 is the concatenation of topic distribution vector from previous r times-

tamps.

Finally, we apply a Softmax function on the output vector Y to convert it into a valid

probability distribution P (yt|ht), as follows:

P (yt = i|ht) =
exp(Yi)∑|V |
j=1 exp(Yj)

. (4.11)

The next word yt = xt+1 in the sequence is generated by sampling from this conditional

distribution. The ITG repeats this whole process multiple times to generate new words in

the sentence until a end-of-sentence marker is generated.

We graphically demonstrate how ITG generates sentences by iteratively generating one

word at a time in Figure 4.2, which also shows the unrolled architecture of ITG. Before

generating text, ITG infers n topics from the historical stream data and computes topic
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Figure 4.2: ITG: Unrolled Architecture

distribution for each timestamp which are stored in the History Extractor Module. The

actual generation process starts with a timestamp T as input and the start-of-sentence

marker (#) as the first generated word, i.e., x1 = #. Given input T , the History Extractor

Module generates the concatenated topic distribution vector θT−r:T−1, which in turn, is fed

as an input to the Influence Generator, Γ. Γ generates the influence vector γT , which is

augmented with the vector representation of x1 as a bias, to form xC1 . Then, xC1 is passed

through Sequence Generator which generates a hidden state h1 as well as outputs the next

word in the sequence, i.e., y1. For generating the next word, y1 becomes x2 and goes through

the same steps as before and generates hidden state h2 as well as outputs y2. This iterative

process continues until yt = ∗, the end-of-sentence marker. At this moment, the current

sentence generation is complete and the next sentence can be generated by again starting

with the start-of-sentence marker (#) as the first word in the sequence. Finally, the whole

80



process is summarized in Algorithm 1 which describes the generation of a single sentence by

ITG for a particular global timestamp T .

Algorithm 1: Influenced Text Generation (ITG) Process
Process ITG (T,Θ,Γ,Ω, r, n,K,E);
Input : T : discrete global timestamp

Θ: Topic Generator (n: number of topics)
Γ: Influence Generator (K: cardinality of influence vector)
Ω: Sequence Generator (E: cardinality of word vector)
r: History Window

Output: Generated sentence X corresponding to T
x← {start of sentence marker}
θT−r:T−1 ← Θ(θT−r)‖Θ(θT−r+1)‖...‖Θ(θT−1), Topic History
γT ← Γ(θT−r:T−1), Generate Influence Vector for timestamp T
t = 1
repeat

for i← 1 to t do
xCi ← xi‖γT , where, ‖ is concatenation operation

end
compute ht ← Ω(xC1:t−1) by applying Ω recursively
Draw word yt ∼ P (yt|ht), where P (yt|ht) ∝ exp(WΩht +BΩ)
x← x ∪ {yt}

until end of sentence marker is generated ;
return x

4.2.5 Estimation of ITG model parameters

In this section, we present the estimation techniques for the optimal values of ITG model

parameters. Close observation through Equation 4.6-4.10 reveals that ITG contains the

following set of parameters:

W =
{
WΩ, BΩ,W Γ

1 , B
Γ
1 ,W

Γ
2 , B

Γ
2

}
(4.12)
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We find the optimal values for the parameter setW by maximizing the log-likelihood of

the training text stream data. The optimization problem thus can be written as follows:

W∗ = argmax
W

logL(x1x2...xn|W ) (4.13)

As maximizing the log-likelihood is the same as minimizing the negative of the log-

likelihood function and as we know the exact word which comes next in the sequence during

the training process, our optimization problem boils down to minimizing the softmax cross

entropy with logits between the conditional distribution P (yt|ht) and the actual word that

appears next in the training data. Softmax Cross Entropy with logits essentially measures the

probability error in discrete classification tasks in which the classes are mutually exclusive.

Thus,

W∗ = argmin
W

{− logL(x1x2...xn|W )} (4.14)

= argmin
W

−
N∑
j=1

|V |∑
i=1

I(xj, i) · logP (yt = i|ht(W ))

 (4.15)

Here, N is the total number of words in the training data. I(x, y) is an indicator function

that returns 1 if x = y and 0 otherwise.

We use back-propagation to learn the weights of the network connection edges of ITG.

Specifically, we use Adaptive Moment Estimation which is a popular stochastic gradient

descent technique and commonly known as Adam Optimizer to compute the gradient for

minimizing our objective function in Equation 4.15. Adam Optimizer is an update to the

RMSProp [26], which is another popular optimizer. In Adam Optimizer, running averages

of both the gradients and the second moments of the gradients are used. More more details,

refer to [38].
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4.3 Experimental Design

In this section, we describe our experimental setup including datasets used for experiments,

baseline algorithms for comparison and the evaluation roadmap to measure the performance

of ITG.

4.3.1 Dataset

We experimented with six different sets of publication title stream data to evaluate the

performance of ITG. These datasets were collected from the Open Academic Graph1[65, 61].

Here, we focused on studying how the paper titles published by different machine learning

related conferences evolved over time. As community, we considered both the core machine

learning community, e.g., NIPS, ICML as well as research communities that applies a fair

share of machine learning, e.g, KDD, SIGIR. Specifically, we considered all the titles of

papers published during the year span 1996-2015 by the following six conference venues:

NIPS, CVPR, ICML, KDD, SIGIR and WWW. For these datasets, the discrete timestamp

corresponds to a year, i.e., all papers published in the same year share the same discrete

timestamp. Each row in these datasets consists of a tuple <timestamp,paper title> and

altogether they contain 35, 650 paper titles in total. Again, each paper title can contribute

multiple instances for predicting the next word which resulted in 309, 966 total instances.

More details about the publication dataset is presented in Table 4.1.

4.3.2 Evaluation Roadmap

It is not possible to do a direct quantitative evaluation of the community-influence on text

generation due to the lack of ground truth information. Thus, to evaluate the performance

of the proposed ITG process, we rely on two different strategies: 1) Conduct qualitative

evaluation and 2) Conduct indirect quantitative evaluation by applying ITG on some ap-
1https://www.openacademic.ai/oag/
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Conf. # of Titles Title/Year Total Words Words/Title
KDD 5,499 274.95 49,980 9.08
NIPS 6,229 311.45 49,792 7.99
SIGIR 3,994 199.7 34,892 8.73
ICML 4,106 205.3 34,159 8.32
WWW 5,701 285.05 50,253 8.82
CVPR 10,121 506.05 90,890 8.98

Table 4.1: Dataset Summary

plication task. The primary purpose of indirect quantitative evaluation is to see whether

capturing the evolution of community-influence actually helps us achieve better performance

in some text generation application task. However, the goal task must involve the notion of

evolving text stream data over time. For this reason, we consider Chronological Summary

Generation as our goal task. The benefit of this task is that it provides a way to conduct

indirect quantitative evaluation of ITG, as direct evaluation is impossible due to the lack of

ground truth data for community-influence which is an abstract concept.

We first partition each publication dataset into 20 different timestamps where each par-

tition corresponds to a year of publication and consists of the papers published in that

particular year. Note that, this timestamp corresponds to the big T notation from the

model description in section 4.2. This allows us to view the publication title datasets as text

stream data.

While training of ITG is straightforward, testing of ITG is challenging due to the following

two reasons: first, there is no standard testing metric to evaluate Chronological Summary

Generation task and second, each timestamp T is associated with multiple independent

publication titles; thus, after ITG generates a piece of title, it is unclear what is the golden

publication title in the testing set against which the generated text should be compared.

Due to the difficulties associated with evaluating the performance of ITG, we propose a

new way to evaluate the Chronological Summary Generation task. Two popular evaluation
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Algorithm 2: Time aware BLEU score computation

Time aware BLEU (T,G,R);
Input : T : discrete timestamp

G: Generated Text set
R: Reference Text set

Output: Time sensitive BLEU
score← 0
|G|← number of sentences in G
for each sentence g in G do

for each sentence r in R do
compute BLEU(g, r)

end
r∗ = argmax

r
BLEU(g, r)

score← score+BLEU(g, r∗)
R← R− {r∗}

end
return score

|G|

metrics from the literature for text summarization are BLEU [52] and ROUGE [43] where

a score is generated by comparing the automatically generated text against some reference

text generated by humans. However, both BLEU and ROUGE do not consider the notion of

time, thus we need a time-sensitive customization of both BLEU and ROUGE. The simplest

way to do this is to compare a ITG generated text for timestamp T against the partition

corresponding to the same timestamp T . This means, when ITG is asked to generate a

text relevant to timestamp T , the ground truth text data against which the generated text

is compared must also correspond to the timestamp T . To tackle the second challenge of

matching against multiple independent publication titles, we adopt a simple greedy approach

where the ITG generated text is matched against each ground truth sentence in the partition

corresponding to the timestamp T and paired with the most similar one in terms of BLEU

or ROUGE score. The matched ground truth sentence is then removed from the partition so

that the next generated sentence cannot match with the previously matched sentence again.
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This ensures that ITG is generating diverse set of sentences rather than just memorizing

one single sentence from each timestamp T . This way, we can use ITG to generate multiple

sentences for a particular timestamp T and then average the scores of all generated sentences

to get an evaluation score corresponding to timestamp T . This whole computation process is

presented in Algorithm 2, where we demonstrate the case for time-sensitive BLEU score. The

case for ROUGE is exactly similar. Finally, these average scores across different timestamps

can be further averaged to provide a unified Chronological Summarization score2.

4.3.3 Baseline Methods

As the notions of influenced text generation and chronological summary generation of text

stream data are new, there is no existing baseline we could readily use. Therefore, we had

to resort to existing static text generation processes as our baseline methods to compare

against. Two such baselines are simple bigram language models and Long-Short Term Mem-

ory (LSTM) [27, 21]. For a fair comparison, we also created two artificial baselines where

text generation can evolve over time. The first one is called RHLSTM which is identical to

ITG except the fact that the influence vector of RHLSTM is generated randomly as opposed

to generating it by the Influence Generator of ITG. The second baseline is called IILSTM

where we do not inject the influence vector as a bias into the vector representation of words,

rather, the Influence Generator directly computes a probability distribution for sampling the

next word and this probability is multiplied with the probability computed independently

by LSTM. Table 4.2 contains the summary of these baseline algorithms along with ITG.
2All the codes and evaluation scripts for experimentation can be found at the following link:

(https://bitbucket.org/karmake2/itg/src/master/)
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Acronym Details Nature
Bigram Bigram Language Model static
LSTM Long short-term memory static

RILSTM LSTM with Random Influence dynamic
IILSTM LSTM with Independent Influence dynamic
ITG Influenced Text Generation dynamic

ITG-EI Externally Influenced Text Generation dynamic
ITG-CI Combined Influenced Text Generation dynamic

Table 4.2: Methods for Quantitative Comparison. The details of ITG-EI and ITG-CI are
provided in section 4.4.1

4.4 Results

This section presents both quantitative and qualitative evaluation results for ITG. For quan-

titative evaluation, we compare the performances of ITG against multiple baseline methods

for the Chronological Summary Generation task (section 4.4.1). For qualitative evaluation,

we demonstrate how ITG captures the evolution of community-influence while generating

text corresponding to a particular time-stamp (section 4.4.2). For all the results reported in

this section, ITG used the following parameter settings: r was set to 3, for both Sequence

Generator and Influence Generator, the number of hidden units was empirically set to 256,

K (dimension of influence vector) was set to 15, batch size was set to 2000 instances and

the learning rate was set to 0.01. For the Topic Generator, n (number of topics) was set

to 15 and LDA was run using α = 0.1 and β = 0.05. Note that, a comprehensive study of

different parameter settings for ITG is beyond the scope of this paper.

4.4.1 Quantitative Evaluation

Figure 4.3 provides the summary of results for the Chronological Summary Generation task.

Close examination of Figure 4.3 reveals that ITG outperforms all other baselines by a clear

margin for all six datasets. For example, BLEU-4 score obtained by ITG on KDD Dataset is
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0.57, while LSTM obtained only a score of 0.22. ROUGE-L score obtained by ITG is 0.63,

while it is 0.31 for LSTM. This clearly indicates that ITG can indeed capture the temporal

evolution of KDD paper titles over time and given a input timestamp T , can generate text

relevant to T . Also note that, RILSTM performs significantly worse compared to LSTM

for most datasets which implies that the influence vector plays the key role in helping ITG

capture the evolution of the text stream. It is also noteworthy that IILSTM is the second

best performing method which confirms that injecting influence vector as a bias into the

word representation works better than using influence vector independently to compute a

probability distribution and then multiply it with LSTM probabilities.

To get more insight into the performance of ITG, we plot the timestamp-wise performance

of all compared methods for KDD Dataset (BLEU 4) and WWW Dataset (ROUGE L) in

Figure 4.4 [other similar plots omitted due to lack of space]. A general inspection of Figure 4.4

also demonstrates the superiority of ITG for Chronological Summary Generation task, where,

for any performance metric, ITG obtains the best score across different timestamps for most

of the cases.

External Influence:

So far, we have only considered the influence of the community for which the text generation

is targeted towards. However, we argue that, other related communities also pose indirect

influence on the text generated within the target community. For example, a shift in the

interest of theoretical machine learning conferences like ICML often influence the research

directions pursued by the more applied conferences like KDD or WWW. To test this hypoth-

esis, we conducted a series of experiments where instead of using the influence of the target

community (e.g., KDD, WWW), we computed the influence vector from the historical topic

distribution of a core machine learning community (e.g. ICML, NIPS). We call this approach

ITG-EI where EI means external influence. We conducted another set of experiments where

we computed the influence vectors from both the target community and a related external
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(a) KDD (b) NIPS

(c) SIGIR (d) ICML

(e) WWW (f) CVPR
Figure 4.3: Comparison of ITG against baseline text generation techniques for Chronological
Summarization task
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(a) KDD: BLEU 4 (b) WWW: ROUGE L

Figure 4.4: Year-Wise Performance distribution of ITG against different baseline text gen-
eration techniques
community and injected both influence vectors into the ITG process. We call this approach

ITG-CI where CI stands for combined influence. Two sample results from these experiments

are shown in Figure 4.5. Experiments results suggest that, although ITG-EI is not always

better than ITG itself, however, ITG-CI outperforms basic ITG as ITG-CI combines both

internal and external influence.

(a) KDD Influenced by ICML (b) WWW Influenced by ICML

Figure 4.5: Results of adding external influence while generating text for Chronological
Summarization task
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Topic Top Keywords
Optimization matrix, gradient, sparse, convex, stochastic

Search Relevance information, retrieval, search, index, document
Rule Mining rule, discovery, association, pattern, mine

Social Networks social, network, recommender, community, topic
SVM Classifiers supervised, learning, support, vector, machine

Behavior Modeling log, behavior, personalization, click, feedback

Table 4.3: Samples Topics Extracted from KDD, SIGIR and ICML paper titles for year
range [1995-2015] Using LDA

4.4.2 Qualitative Evaluation

In this section, we present qualitative results to show the great potentials of ITG. As men-

tioned in section 4.1, ITG should be able to generate syntactically correct, semantically

coherent and time-sensitive evolving text. To demonstrate that ITG can generate sentences

aligned with the evolution of the text stream corresponding to evolving community-influence,

we first ran LDA on paper titles from KDD, ICML and SIGIR over the year range 2000-

2015. Number of topics was set to 15. Table 4.3 shows six example topics along with top 5

keywords for each topic. For two topics, we also show how their distributions evolved over

time within ICML community in Figure 4.6. For example, Figure 4.6a (4.6b) shows how the

proportion of topic Optimization (SVM ) within the paper titles published by ICML evolved

over the year range [2000-2015]. We can clearly see from Figure 4.6 that, Optimization

became more and more popular over the years in ICML (from ∼ 10% to ∼ 25%), while

research on Support Vector Machine Theory matured during this time signified by the decay

in proportion from ∼ 20% to ∼ 7%.

Next, we did the same analysis for KDD and SIGIR in Figure 4.7 with respect to two

different topics for both KDD and SIGIR. For KDD, we considered topics Social Networks

[Figure 4.7a, 4.7b] and Rule Mining [Figure 4.7c, 4.7d] and for SIGIR, we considered topics

Search and Relevance [Figure 4.7e, 4.7f] and User Behavior Modeling [Figure 4.7g, 4.7h].
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(a) ICML: Topic Optimization (b) ICML: Topic SVM

Figure 4.6: Topic Distribution in ICML paper titles over the year range: 2000-2015. Only 2
topics shown for lack of space.

However, beside plotting the original topic-distribution trend from the real conference pro-

ceedings (Figures with α marker and red color), we also plot the simulated topic-distribution

trend computed from the text generated by ITG (Figures with β marker and green color).

Close observation of Figure 4.7 confirms that ITG can indeed generate sentences aligned

with the evolution of the text stream corresponding to evolving community-influence. For

example, Figure 4.7g shows that research interest towards user behavior modeling grew sig-

nificantly within SIGIR community in the past ten years, which is also nicely reflected in

the text generated by ITG [Figure 4.7h]. On the other hand, research on association rule

mining almost matured after 2008 within the KDD community [Figure 4.7c], which has also

been captured effectively by ITG which is apparent from the decaying trend of Figure 4.7d.

Finally, Table 4.4 presents some sample paper titles generated by ITG for different time

ranges targeted towards KDD community. Given a year as input, ITG was invoked to

generate a title for that particular year. A closer look into Table 4.4 reveals that ITG can

indeed generate syntactically correct, semantically coherent and time-sensitive evolving text.

It is also worth mentioning that, ITG did not store any paper to year mapping information.

Table 4.4 also nicely captures the interest shift within KDD community over the years. For

example, paper titles generated for year 2000-2002 includes topics like rule mining and tree
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(a) KDDα: Social Network (b) KDDβ : Social Network

(c) KDDα: Rule Mining (d) KDDβ : Rule Mining

(e) SIGIRα: Search & Relevance (f) SIGIRβ : Search & Relevance

(g) SIGIRα: Behavior Modeling (h) SIGIRβ : Behavior Modeling

Figure 4.7: Topic distribution trend analysis to demonstrate how ITG captures community-
influence while generating text. Captions of each subfigure is written in the following form:
xα|β : y, where, x denotes the conference name, y denotes the topic being analyzed and α
means the original topic distributions from real conference proceedings and β means topic
distributions in text generated by ITG.
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year # Sample Generated Title
2000 1 discovering in hierarchical rules using lexical knowledge
- 2 data mining criteria for tree based regression and classification

2002 3 mining frequent class sets in spatial databases
2007 - 1 a framework for community identification in dynamic social net-

works
2009 2 learning preferences of new users in recommender systems

3 data mining for intrusion detection from outliers
2012 - 1 deep model based transfer and multi task learning for biological

image analysis
2015 2 a bayesian framework for estimating properties of information net-

work
3 active learning for sparse bayesian classification

Table 4.4: Sample titles generated by ITG for conference KDD across different year ranges

based classifications, while paper titles generated for year 2012-2015 includes topics like deep

learning and active learning, which is really interesting.

4.5 Related Works

There has been a surge of research interest in the use of neural network (NN) models for

automatic text generation in recent years [18, 39, 36, 56]. The first NN-based text generator

was proposed by Kukich [40], although generation was done only at the phrase level. Recent

advances in recurrent neural network-based language models (RNN-LM) have demonstrated

the value of distributed representations and its power to model arbitrarily long dependen-

cies [49, 50]. Sutskever et al. [64] introduced a simple variant of the RNN that can generate

meaningful sentences by learning from a character-level corpus. Mao et.al. have demon-

strated how Recurrent Neural Networks, specially, Long-Short-Term-Memory (LSTM) is

effective in solving various text generation tasks [47]. TopicRNN proposed by Dieng [18]

integrated the merits of RNNs and latent topic models to capture long-range semantic de-
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pendency. Recently, Generative Adversarial Nets (GANs) that use a discriminative model

to guide the training of the generative model has shown promising results in automated text

generation [55, 44, 13, 76]. However, all these existing methods from the literature are static

text generation processes with no notion of time and thus, can not model the community-

influence associated with dynamically evolving text stream data. Whereas, our aim was to

develop a more dynamic text generation process that can capture this community-influence

associated with the generation of stream text data.

Evolution of text stream data has primarily been studied from the perspective of topic

modeling techniques [68, 46, 6], whereas our work is focused on the generation of exact

sentences. Influence-Based Community Detection is another related area to our work (see [5]

for a comprehensive survey), however, our goal is completely different as we primarily study

Influence-Based Text Generation.

4.6 Conclusion

In this paper, we introduced and studied the challenging problem of modeling community-

influence on the generation of dynamically evolving text stream data. We proposed an influ-

enced text generation (ITG) process built upon a recurrent neural network based architecture

which consists of three major components: 1) Sequence Generator for generating syntacti-

cally correct sentences 2) Topic Generator for generating historical topic distributions within

the target and other related communities and finally 3) Influence Generator for capturing

evolving community-influence on the text generation process. We quantitatively evaluated

ITG on chronological summarization task through comprehensive experiments with six pub-

lication stream datasets. We demonstrated that ITG outperforms multiple baseline methods

by a significant margin on the goal task and also presented a handful number of qualitative

results to verify that ITG can indeed generate syntactically correct, semantically coherent

and time-sensitive evolving text. Although we described ITG specifically in the context of
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text generation, however, the model is quite general and can be applied to any sequence

data which evolves over time. An important future direction is to apply ITG on different

types of sequence data to verify the generality of the model.
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Chapter 5

Conclusion

Understanding the influence of external factors on the behavior of users is an important

research challenge which has not received significant attention so far in the literature. This

thesis presents the first study of modeling external influence on user’s information seeking

and content generation behavior, which are two prominent ways to observe user interaction

behavior.

The thesis started with demonstrating the value of big text data for mining the external

influence on user interaction behavior. Next, I developed a new model for mining the influ-

ence of popular trending events on user search behavior. One particular limitation of this

method was the assumption that each event poses its influence on the user search behavior

which is unrealistic as many real word events are correlated and would pose a joint influence

on user search behavior. To relax this assumption, I proposed a joint influence model based

on Multivariate Hawkes Process which can model the inter-dependencies among different

events in terms of their influence. Experimental results verified that the joint influence

model can effectively capture the trend of the influence.

The last part of this thesis focuses on modeling the influence of external factors on user

generated contents. I particularly focused on how evolving community-interest influence the

content generation process by its users. I proposed a new deep-learning architecture called

ITG which computes an influence embedding that is injected as a bias in the text generation

process. Experimental results indicate that the influence embedding indeed captures evolving

community-interest in a meaningful way which enables time-aware text generation possible.

All the problems studied in this thesis are entirely new which have never been studied
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before. Thus, there are still many open challenges in this area which need to be addressed

before this research direction can mature. However, as a first step towards mining influ-

ence from unstructured data, this thesis can provide a roadmap for following research in

this direction. One particular future direction is to incorporate the influence models into the

SOFSAT framework proposed in [58]. I hope this thesis will encourage my fellow researchers

to work more in this area and thus, contribute towards building more comprehensive intel-

ligent systems in the future.
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