
MLFriend: Interactive Prediction Task Recommendation for Event-Driven
Time-Series Data

Lei Xu, Shubhra Kanti Karmaker Santu and Kalyan Veeramachaneni
Laboratory for Information & Decision Systems

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

{leix,santu,kalyanv}@mit.edu

Abstract

Most automation in machine learning focuses on model
selection and hyper parameter tuning, and many over-
look the challenge of automatically defining predictive
tasks. We still heavily rely on human experts to define
prediction tasks, and generate labels by aggregating raw
data. In this paper, we tackle the challenge of defining
useful prediction problems on event-driven time-series
data. We introduce MLFriend to address this chal-
lenge. MLFriend first generates all possible prediction
tasks under a predefined space, then interacts with a data
scientist to learn the context of the data and recommend
good prediction tasks from all the tasks in the space.
We evaluate our system on three different datasets and
generate a total of 2885 prediction tasks and solve them.
Out of these 722 were deemed useful by expert data sci-
entists. We also show that an automatic prediction task
discovery system is able to identify top 10 tasks that a
user may like within a batch of 100 tasks.

1. Introduction
A primary goal of machine learning over event-driven

time series datasets is to learn patterns and predict future
outcomes. However, when faced with such large intercon-
nected data, even experts find it difficult to decide what pre-
dictive tasks to focus on. We investigated the 15 most popu-
lar event-driven time series datasets on Kaggle for which no
explicit prediction goal was defined. Only 34% of kernels1

were focused on building predictive models2, while the ma-
jority simply helped to show statistics and visualize data. If
we ignore datasets that pertain to stock price and product
price where predicting the price column is an obvious pre-
diction task, the percentage of kernels exploring predictive
models drops to 23%.

Even for data science enthusiasts, defining prediction
tasks on event-driven data is challenging, especially when
the most interesting column is not very obvious. This trig-
gers an interesting research question: Is it possible to build a

1A kernel is a piece of code uploaded by a Kaggle user trying to
process data. For this survey, we checked 10 most popular kernels
for each dataset.

2We define making a predictive model as training a model to
predict a future outcome.

upload
a dataset

 propose
prediction problems

give feedback

 generate
prediction problems

solve
them using autoMLserver

1

2a

2b

4

3

Figure 1: The procedure of using MLFriend to discover
useful prediction tasks for a new dataset. MLFriend shown
here as server serves proposes prediction tasks to the
user/data scientist, who can give feedback and ranking.

system that can formulate useful prediction tasks automati-
cally? Formulating a prediction task precisely is non-trivial.
Natural language questions are vague and usually are not
grounded in available data, and data scientists need to spec-
ify a lot of details and perform a lot of pre-processing before
they can even begin doing machine learning.

Take for example a so called machine learning goal ex-
pressed as: predicting the likelihood of future flight delays.
First, the user must specify the entity in question. In the case
above, we are not sure whether we need to make predictions
for each flight number, each aircraft, or each airline com-
pany. Second, they need to figure out how to quantify the
outcome they want to predict. For example, they can build
a classification model to predict whether a particular flight
will be delayed or not, or they can build a regression model
to predict how many flights will be delayed and the average
delay time. Finally, the prediction window is also unknown.
For example, the user may want to predict flight delays in
the next few hours or as far out as next year. By specifying
these details, a simple sentence can become tens of predic-
tion tasks, all with different levels of usefulness and perhaps
with different prediction accuracies.

For a computer to generate these tasks and process the
data, this formulation requires a precise mathematical rep-
resentation. But to the best of our knowledge, no such rep-
resentation currently exists for prediction tasks. To achieve
this, in this paper we represent a prediction task using a se-
quence of operations over a dataset pertaining to a time pe-
riod. We came up with these operations by surveying a large

ar
X

iv
:1

90
6.

12
34

8v
1

 [
cs

.L
G

]
 2

8
Ju

n
20

19

repository of prediction tasks. The challenge of however lies
in balancing coverage with usefulness. Thus we limit these
operations to a small subset of what is possible but extensi-
ble.

Given a general expression for representing a prediction
task, computers can quickly enumerate over all possible in-
stantiations of that representation to generate thousands of
prediction tasks. For example, predicting the likelihood of
future flight delays can be enumerated as predicting the
number of flights delayed by more than 5 minutes for a par-
ticular airline, predicting the number of flight delays at a
particular airport, predicting the average delay of all flights
run by a particular airline and several others. With a large
number of tasks generated, another natural challenge is how
to discover the most useful ones. To this end, we propose
an interactive recommendation method. We train a model
to learn the context of the data and the user’s need during
this interaction. We call this the “automated task discovery”
problem (ATD).

Fig. 1 shows how data scientists use MLFriend to dis-
cover interesting prediction tasks on a new dataset. Once
they plug in a new dataset, the system will show k prediction
tasks, then the data scientist will provide feedback by mark-
ing some tasks as important, interesting or useful per his/her
preferences. The system then uses the data scientist’s feed-
back to learn more about the user preferences and thus, pro-
vides better recommendations in the next iteration. To vali-
date our system, we annotate prediction tasks on 3 datasets,
and show that our interactive recommendation system can
make personalized recommendations effectively.

Our contributions through this paper are as follows:

– To the best of our knowledge, we are the first to formulate
a way to represent a prediction task space that is tractable,
useful and extendable.

– We define ATD, a new recommendation problem over
prediction tasks and then, propose an effective interactive
algorithm for recommending useful tasks.

– We develop an end-to-end system which automatically
generates prediction tasks, extracts training examples,
makes training and validation sets, and applies automatic
machine learning methods (feature engineering, model
selection and tuning) and presents the results. To achieve
this we stand on the shoulders of researchers who have
developed and packaged several AutoML solutions.

The paper is organized as follows. Section 2.presents a
brief overview of the MLFriend system. Section 3.presents
the related work. Section 4.presents our approach for gener-
ating prediction tasks automatically. Section 5.describes the
interactive recommendation method. Section 6.presents ex-
perimental results and Section 7.provides discussion of our
results. Section 8.gives our conclusion and future work.

2. MLFriend Overview
To assist data scientists in formulating and solving pre-

diction problems, we need to build a system that can auto-
matically generate prediction tasks, and help them find the
most useful task to solve. Our system, dubbed MLFriend,

fulfills these goals. We first present a brief overview of the
type of data MLFriend can operate on and subsequently,
describe the overall architecture of MLFriend.
Event-Driven Time Series Data: Our focus in this paper is
event-driven time series tables. Event-driven time series data
takes the form of an incremental table, where an additional
row is added each time an event happens. Each row includes
a timestamp when the event happened, related entities,
and other properties or attributes of the event. Event-driven
data are very common; e.g. flight records, online purchase
records, and online education records all take this form.

We formally define event-driven time series data as
a table T containing Ne + Nd + 1 columns, say
{t, e1, e2, . . . , eNe

,d1,d2, . . . , dNd
}, where t is the time

column, ei is an entity column, and di is another numeri-
cal or categorical column. In our example, t is the date-time
column, e1 and e2 are the flight number column and the air-
line column respectively, and d1 is the flight-delay indicator
column. For simplicity, we only consider data with one time
column. We select an entity column from all entity columns
e∗ ∈ {Φ, e1, . . . eNe} and our goal is to make prediction
tasks for each entity e ∈ e∗. For example, if we choose the
airline column as e∗, we will then create tasks to make pre-
dictions for each airline. When e∗ = Φ, we consider all
records to be related to a pseudo root entity, so that we cre-
ate prediction tasks that attempt to make predictions for all
the records.
Architecture Overview: Fig.2 illustrates the entire work-
flow, using the example of a flight delay table with only 4
columns: a datetime column, a flight number column, an
airline company column, and a boolean column showing
whether or not the flight was delayed. To start the process,
a user uploads this dataset to our system, and specifies the
data type for each column. MLFriend responds to the user
by performing two primary functions as mentioned below:

1. Prediction Task Generation: The system asks for the
entity column for which the user is seeking to develop
predictive models, as well as the prediction window size.
Based on the user response, the system generates hun-
dreds of Prediction Tasks for this entity using a Prediction
Task Representation Language (described in section 4.1.
). An example task for the entity “airline” might be: For
each airline, predict how many flights will be delayed the
next day?

2. Prediction task operationalization: Once a prediction
task is formulated, the next important job for MLFriend
is to extract training examples from the historical data. To
achieve this, MLFriend generates several time points, as
well as target labels at each time point. Now, let us con-
sider the same prediction task again, i.e., For each airline,
predict how many flights will be delayed the next day? To
generate the target value for this prediction task, for each
airline, the system applies two operations to the data af-
ter each time point: (1) an equal filter operation and (2)
a count aggregation operation. In this way, MLFriend
generates the target value at each of the cutoff times.

With the two functions, MLFriend has created a predic-
tion task and extracted training examples. At this point, the

user can decide to employ machine learning to solve the task
and see accuracy, or request MLFriend to generate more
tasks. The user can then rate these tasks as s/he interacts
with the MLFriend.
Solving the prediction task: MLFriend utilizes the AFE
(automated feature engineering) and AutoML frameworks
available to develop a machine learning model for the pre-
diction task.

3. Related Work
Applying machine learning to a practical task requires

several steps, including task definition, data preparation,
feature engineering, and model and hyperparameter selec-
tion. Because each step requires human involvement and
expert knowledge, this process is time-consuming, and the
machine learning community spent a lot of effort design-
ing algorithms and building software to automate one or
more of its aspects. (Katz, Shin, and Song 2016; Kanter and
Veeramachaneni 2015; Mountantonakis and Tzitzikas 2017;
van den Bosch 2017; Khurana, Samulowitz, and Turaga
2017; Kaul, Maheshwary, and Pudi 2017) can all extract use-
ful features from data and generate feature matrices. Sim-
ple machine learning methods, including nearest neighbor
searches, decision trees, and support vector machines, are
sensitive to input features. (Neural networks depend less on
features because they can autonomously learn a task-specific
vector, but they are more sensitive to network structure and
hyperparameters.) Random search and sequential model-
ing methods (Bergstra and Bengio 2012; Snoek, Larochelle,
and Adams 2012; Hutter, Hoos, and Leyton-Brown 2011;
Bergstra et al. 2011; Bengio 2012; Bergstra, Yamins, and
Cox 2013; Swersky, Snoek, and Adams 2013; Maclaurin,
Duvenaud, and Adams 2015) are used in hyperparameter
tuning. (Zoph and Le 2016; Zoph et al. 2017; Liu et al.
2017b; Liu et al. 2017a; Real et al. 2018; Pham et al. 2018;
Baker et al. 2017) propose neural or reinforcement learning
models to search optimal neural network structures. (Thorn-
ton et al. 2013; Feurer et al. 2015; Thornton et al. 2013;
Swearingen et al.) are wrappers for existing machine learn-
ing libraries, providing efficient model selection and hyper-
parameter tuning functions.

These models and software have enabled automation from
the classification or regression task to the prediction result.
However, to the best of our knowledge, no one has tried
to automate the first step in the machine learning process:
defining prediction tasks. This missing piece prevents the
completion of a fully automated pipeline that transforms a
dataset into a useful predictive model and garners results.

4. Automatic Prediction Task Generation
In this section, we propose a representation for prediction

tasks and propose the automatic generation of hundreds of
prediction tasks.

4.1. Prediction Task Generation
The Prediction Task Generation process can be divided

into two distinct steps, namely, Prediction Task Represen-

tation and Prediction Task Enumeration. Below, we present
these steps.
Prediction Task Representation: The goal of any predic-
tion task is to estimate a target label for an entity at a certain
time point. Thus, the goal generated by a prediction task
can be defined as a three tuple < ei, ts, label >. For an
event-driven time series, a target label is a result of a se-
quence of atomic operations applied to the data after the
ts. Each operation can (1) remove some rows, (2) add a
new column to the data, or (3) compute some aggregation.
There are two major categories of operations: filter opera-
tions and aggregate operations. Filter operations filter out
noisy rows and keep rows with some particular property.
fil op, ε and df ∈ {None, e1:Ne

,d1:Nd
} are the filter op-

eration, its hyperparameter and corresponding filter column.
fil op(T ,df , ε) returns some rows of T with column df
satisfying some property.

Aggregation operations aggregate multiple rows
and generate a target label. agg op and dg ∈
{None, e1:Ne ,d1:Nd

} are the aggregation operation
and corresponding aggregation column respectively.
agg op(T ,dg) returns a numerical or categorical value
using data in column dg . Similar to SQL generation
(Zhong, Xiong, and Socher 2017), we pick a predefined
filter operation set Of and predefined aggregation operation
set Og as shown on Table 1.

For the example task for each airline, predict how many
flights will be delayed the next day, we use an equal fil-
ter operation to find all the delayed flights and then use a
count aggregation operation to count the number of delayed
flights for each airline company. Filter operations usually
need a hyperparameter. We further constrain prediction tasks
to only 1 filter operation and 1 aggregation operation. A se-
quence of 2 operations gives us a tractable space, while in-
corporating more operations can increase the possibilities.

We now formally define a executable prediction
task on a event driven time series table T . An
executable prediction task is defined as a 7-tuple
(e∗,fil op, ε,df ,agg op,dg, ts,pw). e∗ is the entity
column for the task, ts is the prediction start time and pw is
the prediction window. We further define a prediction task
template as a 5-tuple: (e∗,fil op,df ,agg op,dg). It’s
very similar to an executable prediction task except that we
generalize it by not including the hyperparameter ε, the start
time ts and prediction window pw.

Operation Set Supported Ops Supported Types

Filter all fil None
Of greater fil, less fil Numerical

eq fil, neq fil Categorical/Entity

Aggregation count agg None
Og sum agg, avg agg, Numerical

min agg, max agg Numerical
majority agg Categorical/Entity

Table 1: Predefined filter and aggregation operation sets.

Prediction Task Enumeration: Using our representation

Prediction task formulation

Automatic
feature

engineering

AutoML

Timestamp
01:00pm, Jan 24 2019
03:45pm, Feb 01 2019
11:20am, Feb 11 2019

08:45pm, May 11 2019

...

Flight
AA245
BA45
IB625

DL77

Airline
AA
BA
IB

DL

Delay
True
False
False

False

Task
Generation

Task
Operationalization

How many flights will be
delayed next day for each

airline?

Tst

01:00pm, Jan 24 2019
03:45pm, Feb 01 2019

08:45pm, May 11 2019

of delays
4
2

1

...... ...

Airline
AA
BA

DL

Figure 2: An example dataset and the process of generating prediction tasks and solving them. We start with a raw event-driven
time series data. We generate prediction tasks using the prediction task generator. Here, we generate How many flights will be
delayed the next day for each airline?. The task operationalization box identifies the training examples from the historic raw
data and outputs a list of training examples shown in the table above it. This table contains the list of training examples, with
the entity for which we are making a prediction, the time point at which the prediction is sought and the outcome that is to be
prediction. This table is then provided to automatic feature engineering (AFE) tools and whose output is then sent to AutoML
systems to develop a machine learning model. For each row in the table, the automated feature engineering tools raw data before
tst to generate a feature vector. We match features and labels to create instances for machine learning models. Many tools are
available For AFE and AutoML. In this paper the focus is on the prediction task formulation.

Algorithm 1: Prediction task enumeration
Input: Entity Column e∗, Table T .
Result: A list of prediction task templates.

1 if type(e∗) /∈ {Φ,Entity,Categorical} then
2 return [];
3 end
4 result← [];
5 for fil op ∈ Of , agg op ∈ Og ,

df ∈ {None, e1:Ne
,d1:Nd

},
dg ∈ {None, e1:Ne

,d1:Nd
} do

6 if type(df) ∈ supported types(fil op) and
type(dg) ∈ supported types(agg op) then

7 result.append
(
(e,fil op,df ,agg op,dg)

)
;

8 end
9 end

10 return result;

of prediction tasks, the generation of these tasks is intuitive.
As shown in Algorithm 1, we exhaustively create all pos-
sible combinations of operations and columns, then check
whether the data type of such combinations is correct. Since
the algorithm does not execute operations on data, it only
needs the data schema. The complexity depends on the size
of the operation set and the number of columns, both of
which are usually small. The upper bound of prediction tasks
using predefined operation sets in Table 1 is(

2(Nc+Ne−1)+2Nn+1
)
×
(
Nc+Ne−1+4Nn+1

)
, (1)

where Ne, Nc, Nn are the number of entity columns, cate-
gorical columns and numerical columns respectively (Nc +
Nn = Nd). Users can try all possible entities by changing
e∗.

4.2. Prediction task operationalization
Given a prediction task, operationalization refers to cre-

ating training examples for machine learning. This involves
two steps: (1) setting the values for the hyperparameters on
the prediction task template, and (2) identifying the training
examples from the historical data.
Setting the hyperparameters: To finalize the task, one
needs to set the hyperparameters for the template. These are
any ε that the operations require and the prediction window,
pw. In our experience these are usually application-specific
hyperparameters that experts prefer to set. The choice of hy-
perparameter may not affect the meaningfulness and useful-
ness of the task, but may affect its practical application. For
example, a user may prefer to predict “number of delays” for
the next week instead of the next day. In many cases, experts
prefer to vary the hyperparameters to see how they affect the
predictability.
Identifying training examples: Identifying training exam-
ples requires us to scan the historical data of each entity
and identify tuples of the form < e ∈ e∗, ts, label >.
We use a fixed-window repeating time to specify multiple
ts. With pw defined, for each e ∈ e∗ we define a base
time point tbase and the terminate time point tterminate. We
fit k back-to-back windows between tbase and tterminate
as {(t(1)st , t

(1)
ed), . . . , (t

(k)
st , t

(k)
ed)}, where t

(i+1)
st = t

(i)
ed and

t
(i)
st + pw = t

(i)
ed . Then each entity from the selected entity

column e ∈ e∗ can be combined with k windows as 3-tuples
(e, t

(i)
st , t

(i)
ed). We can clearly write the start and end time of

each prediction window, pw, in a table as shown in Table
2. Under this representation, label generation is straightfor-
ward. We generate one label for each row (e, tst, ted) in the
table. We extract all related rows from T as

T ′ = {r|r ∈ T , r[e∗] = e, tst ≤ r[t] < ted}. (2)

Then we apply the filter operation and aggregation operation

successfully to generate the label as

l = agg op
(
fil op(T ′,df , ε),dg

)
. (3)

The concept of Cutoff Time: Machine learning model de-
velopment for prediction tasks, using training examples gen-
erated from historical data as described above, usually re-
quires rolling back in time and emulating the conditions at
each of the ts. The system should be carefully designed so
that data used to generate features doesn’t leak the label.
To accurately do this, we introduce the concept of cutoff
time, and describe how cutoff time regulates the usage of
the data. We use the data before tst to generate features, and
we use data between tst and ted to generate labels. Thus
tst represents cutoff time. Current sophisticated auto-
mated feature engineering tools accept cutoff times as
input along side the data 3.

Entity tst ted

AA Jan. 1 Jan. 8
AA Jan. 8 Jan. 15
AA Jan. 15 Jan. 22
AA Jan. 22 Jan. 29

DL

Table 2: Fixed-window cutoff time table example. We
choose the airline as target entity column. tbase is Jan. 1.
tterminate is Jan. 31. pw is 7 days. t∗ is Jan. 15.

5. Learning to Recommend Prediction Tasks
Automated task discovery (ATD) involves discovering in-

teresting prediction tasks within our task space. ATD needs
to be personalized because the usefulness of a task depends
on the user’s high-level goal. For example, airline companies
are more interested in which airport will have an unusual
amount of delayed flights so that they can accommodate
passengers, while passengers are more interested in whether
their flights will be delayed. Hence, a useful ATD system
should heuristically adapt to user’s preference.

We formally define ATD as follows: Given a dataset T
and a user defined parameter n, ATD generates n different
valid prediction tasks X = {x1, . . . ,xn}. ATD ranks these
prediction tasks using a “meta model” 4 and recommends
highly ranked tasks to the user one by one or in a batch fash-
ion. The user then provides feedback by marking each rec-
ommended task as useful or not useful. ATD then uses this
feedback to revise the “meta model” to better accommodate
the user’s preference and re-ranks the prediction tasks ac-
cordingly. This revision process can continue in an iterative
fashion until the user is satisfied with the recommendations.

At first, this set up might suggest that collaborative filter-
ing could be used for the so called “meta model”. But when

3Featuretools: https://docs.featuretools.com/
4We call this meta model to distinguish between it and the

model built to solve the prediction task itself. We remind that our
goal is to use machine learning itself to rank machine learning tasks

applied to ATD, collaborative filtering methods suffer from
two problems:

• Cold start: Nowadays, we have lots of different event-
driven data and some of them are private. A typical sce-
nario would involve only one data scientist working on a
dataset. In this case, collaborative filtering does not work
at all for that user and that dataset.

• Lack of training data for the “meta model: Typical rec-
ommendation systems, such as movie recommenders, are
trained on thousands of items and millions of users. In
ATD, getting that much data is challenging. Our system
targets expert data scientists, who are a much smaller pop-
ulation, and whose time is very expensive, which makes
this data availability even more sparse.

For these reasons, instead of learning correlations be-
tween different users and different data sets, our algorithm
iteratively learns a new meta model for each dataset and each
user.

5.1. Feature Representation for Task
Recommendation

Any recommender system needs a general feature repre-
sentation of the entity it aims to recommend. In our case,
the feature vector is composed of (1) one-hot representa-
tions for the entity column, filter operation, filter column,
aggregation operation and aggregation column, and (2) the
estimated goodness of each attribute, i.e the proportion of
good prediction tasks among all tasks with that column or
operation - so far. The one-hot representations and goodness
scores of all attributes and operations of a task are concate-
nated into a single vector, which is then used as the feature
representation of that particular task.

5.2. Task Discovery Model
In each iteration, the system proposes several tasks, and

the user marks the best ones. The system then learns from
user’s feedback and makes a better recommendation in next
iteration. We use the score prediction model for recommen-
dation. Due to small size of training set, we use linear re-
gression to predict the score. In each iteration r, the system
proposes tasks {x(1)r , . . . ,x

(k)
r }. A data scientist will then

give feedback on each task as {y(1)r , . . . , y
(k)
r }. In the next

iteration r + 1, we learn a new linear model with objective

L =

r∑
i=1

k∑
j=1

(
f(x

(j)
i) · θ − (y

(j)
i)2

)
+ α|θ|2, (4)

where f(·) converts a prediction task to a real-valued feature
vector and α is a regularization hyperparameter and θ are the
parameters for the linear model. The optimum model θ∗ =
argθ minL, then greedily selects the top k tasks with the
highest f(x) · θ∗ in the remaining tasks. Algorithm 2 shows
the recommendation in r+ 1 iteration given all the feedback
from previous r iterations.

Algorithm 2: Task Discovery
Input:
All tasks: S
Previous Shown tasks: X = {x(1:k)1:r }
Previous Feedbacks Y = {y(1:k)1:r }.
Result: A list of k tasks.

1 θ∗r+1 ← argθmin
r∑
i=1

k∑
j=1

(
f(x

(j)
i) · θ − (y

(j)
i)2

)
+ α|θ|2;

2 task score← [];
3 for task ∈ S \X do
4 task score.append((task, featurize(task) · θ∗r+1));
5 end
6 x

(1:k)
r+1 ← top k(task score);

7 y
(1:k)
r+1 ← gather feedback(top k(task score);

8 X ← X ∪ x(1:k)r+1 ;
9 Y ← Y ∪ y(1:k)r+1 ;

10 return top k(task score)

11 Function featurize(task)
12 feature← get feature(task, ‘entity col’);
13 feature← feature⊕ get feature(task, ‘fil col’);
14 feature← feature⊕ get feature(task, ‘agg col’);
15 feature← feature⊕ get feature(task, ‘fil op’);
16 feature← feature⊕ get feature(task, ‘agg op’′);
17 return feature;

18 Function get feature(task, attribute)
19 n good← 0;
20 n← 0;
21 for (x, y) ∈ 〈X,Y 〉 do
22 if task.attribute = x.attribute then
23 n← n+ 1;
24 if y = 1 then
25 n good← n good+ 1;
26 end
27 end
28 end
29 goodness← (n good+1)

(n+1)
;

30 return one hot(task.attribute)⊕ goodness

6. Experimental Settings and Results
Datasets: We pick 3 event-driven time series datasets from
Kaggle and generate prediction tasks on them. Chicago Bi-
cycle5 records the use of shared bicycles in Chicago between
2014 and 2017. Flight Delay6 is the 2015 flight records in
US. YouTube Trending7 records trending YouTube videos
between 2017 and 2018. Each dataset has a time col-
umn. We pick the time column, entity columns, numerical
columns, and categorical columns, while removing unsup-
ported columns like sets or natural language. Table 3 shows
the number of columns we use to generate prediction tasks

5https://www.kaggle.com/yingwurenjian/chicago-divvy-
bicycle-sharing-data

6https://www.kaggle.com/usdot/flight-delays
7https://www.kaggle.com/datasnaek/youtube-new

in each dataset.

Dataset #Entity #Categorical #Numerical

Chicago Bicycle 2 3 4
Flight Delay 4 4 10
YouTube Trending 1 1 4

Table 3: Number of entity columns, categorical columns and
numerical columns in each dataset. Total number of columns
is #Entity+#Categorical+#Numerical+1(time column).

6.1. Task Generation

For each dataset, we pick several entity columns and run
prediction task generation algorithms on these entities. Ta-
ble 4 shows the number of prediction task templates we can
generate on each dataset and each entity.

The number of prediction task templates depends on the
number and type of columns. The flight delay dataset has
19 columns – more than other datasets – so we generate the
most prediction tasks on that dataset. Even though it is a big
dataset, we generate 1680 tasks, which is better than infinite
possibilities. For other datasets, we generate a few hundred
prediction tasks for each entity.

Since we have the same number of filter operations for
each type, but more aggregation operations for numerical
columns than categorical columns in the predefined opera-
tion set, the number of prediction tasks is more sensitive to
the number of numerical columns. Our system also gener-
ates more regression tasks than classification tasks, simply
because only the majority aggregation operation generates
classification tasks while all other aggregation operations
generate regression tasks.

Dataset and Entity #Reg #Cls #Tot

Chicago Bicycle 320/612 99/163 419/775
–from station id 211/289 55/68 266/357
–Φ 109/323 44/95 153/418

Flight Delay 1757/2870 318/490 2075/3360
–airline 898/1435 133/245 1031/1680
–origin airport 859/1435 185/245 1044/1680

YouTube 353/595 38/48 391/643
–category id 153/187 9/11 162/198
–channel title 162/187 10/11 172/198
–Φ 38/221 19/26 57/247

Table 4: Prediction task templates on each dataset. For each
dataset, we choose several different entities for task genera-
tion as listed in first column. Each entry in the table shows
#valid/#all. #all means the number templates with correct
data types. #valid means that at least one hyperparameter
can make that template find a training set with at least 10
instances and a validation set with at least 5 instances.

6.2. Building machine learning models
After we generate prediction tasks, we develop machine

learning solutions using available automated feature engi-
neering tools and AutoML tools.
Set task hyperparameters: To accomplish this we first set
the hyperparameters for each prediction template.
• For filter operations on numerical columns, we select a

threshold which keeps a ratio of data. Typically, we set
target ratio to be 25%, 50%, 75%. We sample some rows
from T , then we choose a threshold which keeps the ratio
of data as close to our target as possible.

• For operations on categorical columns, we try top 3 ma-
jority categories.

Train test splits We pick a time t∗ to split the training and
validation sets. We use all the data, with tst < t∗ as training
data and the other data as validation data. When compared
with cross-validation, our splitting strategy has the following
advantages:
• It prevents feature leakage. If allowed to randomly choose

training and validation sets, the machine learning model
can ”cheat” by remembering some future information
from training examples. For example, if Jan. 1 has an un-
usually high probability of flight delay, a machine learn-
ing model can ”see” from the training set that a flight on
this date is more likely to be delayed, and predict such
for the validation set. Although this information helps the
model to perform well on the validation set, it is impossi-
ble to replicate this performance on a real test set, because
this future information is not available–when it is making
predictions about Jan. 2, such information does not exist.

• It is more similar to the actual application. In a real pro-
duction environment, people update the model regularly
when they collect new data, so each model is only respon-
sible for the next few prediction windows. Here we vali-
date the model by predicting the most recent windows.
Because this mimics a real circumstance, the validation
result closely approximates the model’s performance on a
real application.

Feature engineering and modeling: To build the model,
we use an automated feature engineering package
Featuretools8 to generate features for each train-
ing example. We use scikit-learn and grid search to
build, tune and test a machine learning model.

6.3. Creating Ground Truth for Evaluation
To evaluate the value proposition of our task generation

system and learning efficacy of our APD system, we needed
to identify the most interesting prediction tasks in the task
space. Hence we decided to manually annotate the tasks, and
then identify if the algorithm for APD as described in Sec-
tion 5.can identify the most preferred tasks automatically. We
built a web interface to annotate prediction tasks generated
by our system, and posted our annotation task on Mechan-
ical Turk. However, the workers there couldn’t understand
prediction tasks easily, and after getting random annotations,

8https://docs.featuretools.com/

we decided to annotate the data ourselves. 9 expert data sci-
entists helped compare prediction tasks while 2 of them fin-
ished most of the annotations.

Dataset #Valid #Meaningless #Cmp #Per

Chicago Bicycle 419 320 200 4.04
Flight Delay 2075 1660 416 2.00
YouTube Trending 391 183 350 3.37

Table 5: Annotation statistics. #Valid means the number of
valid prediction tasks. #Meaningless the number of mean-
ingless tasks marked by annotators and #Cmp is the number
of comparison between meaningful tasks respectively. #Per
means the average number of comparison each meaningful
task have where #Per = 2×#Cmp/(#Valid−#Meaningless).

Annotation Settings: Simply rating each task from 1 to
5 doesn’t work because different annotators have differ-
ent scoring means and deviations, and the scoring crite-
rion changes during the annotation for a single annotator.
Recent progress in crowdsourcing data collection suggests
comparison based ranking (Jamieson and Nowak 2011;
Wauthier, Jordan, and Jojic 2013). We use the win-lose-
tie scoring to compare tasks. Each pair of prediction tasks
(A,B) is compared on two metrics: meaningfulness and
usefulness.
• Meaningfulness (m) means that people can understand the

prediction task.
• Usefulness (u) means that the prediction is useful in mak-

ing some high-level decision.
In each comparison, A can win, lose or tie with B in each
metric. We define the scoring function for each metric as

Smetric(A,B) =

3, if A is better than B,

1, if A is as good as or as bad as B,

0, if A is worse than B.
(5)

We weigh the metrics as wm = 0.7 and wu = 0.3. So, in
each comparison, the score A and B get is

sA = wm ∗ Sm(A,B) + wu ∗ Su(A,B). (6)
sB = wm ∗ Sm(B,A) + wu ∗ Su(B,A). (7)

We randomly draw task pairs and annotate win-lose-tie for
each metric. Then we compute the average score of each task
and rank all the tasks.

Win-lose-tie annotation is more time-consuming than a
simple scoring for each task. We solve this problem by in-
troducing a hybrid task filtering and task comparison mech-
anism. If we want to get an expectation of k comparison
scores for each of the n tasks, we have to make kn/2 com-
parisons. We add a feature that can mark a task meaningless,
meaning we believe that it cannot be more meaningful than
any other task. Assume we mark m meaningless tasks, the
number of comparisons can be reduced to k(n−m)/2. Usu-
ally, we can remove more than half of the prediction tasks in
this way. As soon as a task is marked meaningless, it will
not be used for comparison. Table 5 shows the number of
annotations we got.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Bin

Bicycle

C
la
ss
ifi
ca
tio
n

R
eg
re
ss
io
n

Meaningful
Total

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Bin

Flight

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Bin

Youtube

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Bin
0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

Bin
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Bin

Figure 3: Top: Distribution of accuracies for classification tasks on three datasets. Bottom: Distribution of R2 for regression
tasks on three datasets.

7. Discussion

Did our prediction task generation algorithm generate
meaningful problems?: Our generation procedure created
99, 415, and 208 meaningful prediction tasks on Chicago
Bicycle, Flight Delay, and YouTube Trending respectively,
showing that our task space has good coverage. This demon-
strates that it can find many useful prediction tasks on a va-
riety of datasets. Roughly 23.6%, 20.0%, and 53.1% of the
tasks were meaningful for these datasets. Considering the
fact that formulating a useful prediction task is challenging
for experts, our MLFriend, with good coverage and useful-
ness, is helpful for data scientists.
What are the reasons for creating meaningless prob-
lems?: A number of meaningless problems are created since
the system simply does not take into account the seman-
tic meaning of columns. For example, the Chicago Bicycle
dataset has a low meaningful rate, since the system tries to
create prediction tasks that are about predicting the num-
ber of docks in origin and destination stations (which are
not likely to change). A similar issue happens on Flight De-

lay dataset. Meaningless tasks generated on the flight delay
dataset tried to predict the number of scheduled flights.

We also find some tasks annotated as meaningless are in
fact useful when read from a different perspective. For ex-
ample, predict the number of long-haul fights next year is
meaningless if the user is interested in delay and cancella-
tion, but it is actually useful if the user tries to study trans-
portation growth.

This analysis opens door to a fascinating area of research
that would create task filters based on natural language un-
derstanding.
How accurate are the machine learning models for these
tasks?: Fig. 3 shows the histogram of R2 for all regres-
sion tasks and the histogram of accuracy for all classification
tasks. For regression tasks, lots of tasks get 0.9 < R2 < 1.0.
Such high R2 indicates trivial prediction tasks. For tasks
with R2 < 0.9, the distribution varies between different
datasets. For classification tasks, there’s no clear pattern for
accuracy distribution, because making predictions on differ-
ent datasets involves different levels of difficulty.

On Fig. 3, we also show the distribution of meaningful

prediction tasks over performance. We observe that 21.4%
percent of regression tasks and 41.5% percent of classifi-
cation tasks are meaningful. In regression tasks, those with
R2 > 0.9 tend to be trivial and meaningless, while classifi-
cation tasks with high accuracy do not have the same phe-
nomenon. Using our predefined operation sets, classification
tasks are more meaningful then regression tasks.
What are the top rated tasks and are they useful?: Fig.
4 shows top rated tasks in each dataset. We show structured
representation, generated natural language and human inter-
pretation in the table. Despite using only two successful op-
erations to generate labels, these top-rated prediction tasks
are very useful when interpreted by different users.
• On the Chicago Bicycle dataset, prediction tasks gener-

ated for each origin station are more interesting than pre-
diction tasks generated for all the data. For example pre-
dicting majority destination and/or the number of trips
made from each station can help the bike sharing com-
pany optimize their operation, while predicting the num-
ber of daily pass users in each station can help determine
the type of ads that should be placed there.

• On Flight Delay dataset, MLFriend can formulate tasks
helping airline and airport operation. For example, air-
ports can predict how many flights will be delayed so that
they can get prepared.

• On the YouTube dataset, MLFriend generates interest-
ing predictions for both channels and categories. The pre-
diction for the number of views and comments can help
channels operate efficiently and properly prepare comput-
ing resources.

Did automatic problem discovery approach work?: To
test the recommendation system, we use our annotations to
simulate a real user. In each step, the recommendation sys-
tem is allowed to show 10 prediction tasks to a user, where-
upon the user gives feedback. The recommendation system
interacts with data scientist for 10 iterations. We evaluate
how many top-10% (γ = 10%) and top-5% (γ = 5%) pre-
diction tasks are shown to the user during this process.

We simulate the user using the following model. We as-
sume a user is more likely to mark a prediction task ”good”
if a task has a higher rank in our annotation, and that he will
not mark a really bad task as ”good.” Specifically, they will
mark a task ”good” with a probability

P =

{
1− r1

N , if r1 ¡ N2 ,

0, otherwise.
(8)

where ri is the rank of the prediction task in our annotation.
Since there is no existing baseline, we compare our model
with uniform selection (PR). We run this experiment 100
times to avoid randomness.

Fig. 5 plots the average number of top prediction tasks
found. We observe that our interactive recommendation al-
gorithm significantly and consistently outperforms uniform
selection in each iteration and on all three datasets. With this
we show that it is possible to recommend prediction tasks.
With a simple linear model, our algorithm can discover 2 to
3 times more top-rated tasks comparing with uniform selec-
tion.

8. Conclusion and Future Work
In this paper, we tackle a fundamental challenge in au-

tomated data science: automatically discovering interesting,
meaningful prediction problems on event-driven time series
data. We define a clear prediction problem representation,
then build MLFriend, a system that generates prediction
tasks, learns and ranks them using a meta model and solves
prediction tasks using AutoML frameworks. By applying
our system to 3 datasets, we show that our system can prop-
erly define and solve prediction tasks. We further show that
it’s possible to build a user-specific recommendation system
to suggest useful problems.

In the future, we will pursue the following directions.
• The task space is still relatively small – for example, it

does not support multiple column operations. We will
study how to introduce these features without increasing
the task space too much.

• The natural language description is still not understand-
able for non-experts. We will try to annotate data and
build a neural model to generate high-quality descriptions
for non-experts.

• We want to figure out how to effectively annotate large-
scale prediction problems to train a better recommenda-
tion system.

References
[Baker et al. 2017] Baker, B.; Gupta, O.; Raskar, R.; and
Naik, N. 2017. Accelerating neural architecture search using
performance prediction. arXiv preprint arXiv:1705.10823.

[Bengio 2012] Bengio, Y. 2012. Practical recommendations
for gradient-based training of deep architectures. In Neural
networks: Tricks of the trade. Springer. 437–478.

[Bergstra and Bengio 2012] Bergstra, J., and Bengio, Y.
2012. Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13(Feb):281–305.

[Bergstra et al. 2011] Bergstra, J. S.; Bardenet, R.; Bengio,
Y.; and Kégl, B. 2011. Algorithms for hyper-parameter op-
timization. In Advances in neural information processing
systems, 2546–2554.

[Bergstra, Yamins, and Cox 2013] Bergstra, J.; Yamins, D.;
and Cox, D. D. 2013. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for
vision architectures.

[Feurer et al. 2015] Feurer, M.; Klein, A.; Eggensperger, K.;
Springenberg, J.; Blum, M.; and Hutter, F. 2015. Efficient
and robust automated machine learning. In Advances in
Neural Information Processing Systems, 2962–2970.

[Hutter, Hoos, and Leyton-Brown 2011] Hutter, F.; Hoos,
H. H.; and Leyton-Brown, K. 2011. Sequential model-based
optimization for general algorithm configuration. In Interna-
tional Conference on Learning and Intelligent Optimization,
507–523. Springer.

[Jamieson and Nowak 2011] Jamieson, K. G., and Nowak,
R. 2011. Active ranking using pairwise comparisons. In
Advances in Neural Information Processing Systems, 2240–
2248.

[Kanter and Veeramachaneni 2015] Kanter, J. M., and
Veeramachaneni, K. 2015. Deep feature synthesis: Towards
automating data science endeavors. In Data Science and
Advanced Analytics (DSAA), 2015. 36678 2015. IEEE
International Conference on, 1–10. IEEE.

[Katz, Shin, and Song 2016] Katz, G.; Shin, E. C. R.; and
Song, D. 2016. Explorekit: Automatic feature generation
and selection. In Data Mining (ICDM), 2016 IEEE 16th In-
ternational Conference on, 979–984. IEEE.

[Kaul, Maheshwary, and Pudi 2017] Kaul, A.; Maheshwary,
S.; and Pudi, V. 2017. Autolearnautomated feature gener-
ation and selection. In Data Mining (ICDM), 2017 IEEE
International Conference on, 217–226. IEEE.

[Khurana, Samulowitz, and Turaga 2017] Khurana, U.;
Samulowitz, H.; and Turaga, D. 2017. Feature engineering
for predictive modeling using reinforcement learning. arXiv
preprint arXiv:1709.07150.

[Liu et al. 2017a] Liu, C.; Zoph, B.; Shlens, J.; Hua, W.;
Li, L.-J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy,
K. 2017a. Progressive neural architecture search. arXiv
preprint arXiv:1712.00559.

[Liu et al. 2017b] Liu, H.; Simonyan, K.; Vinyals, O.; Fer-
nando, C.; and Kavukcuoglu, K. 2017b. Hierarchical rep-
resentations for efficient architecture search. arXiv preprint
arXiv:1711.00436.

[Maclaurin, Duvenaud, and Adams 2015] Maclaurin, D.;
Duvenaud, D.; and Adams, R. 2015. Gradient-based
hyperparameter optimization through reversible learn-
ing. In International Conference on Machine Learning,
2113–2122.

[Mountantonakis and Tzitzikas 2017] Mountantonakis, M.,
and Tzitzikas, Y. 2017. How linked data can aid machine
learning-based tasks. In International Conference on Theory
and Practice of Digital Libraries, 155–168. Springer.

[Pham et al. 2018] Pham, H.; Guan, M. Y.; Zoph, B.; Le,
Q. V.; and Dean, J. 2018. Efficient neural architecture search
via parameter sharing. arXiv preprint arXiv:1802.03268.

[Real et al. 2018] Real, E.; Aggarwal, A.; Huang, Y.; and Le,
Q. V. 2018. Regularized evolution for image classifier ar-
chitecture search. arXiv preprint arXiv:1802.01548.

[Snoek, Larochelle, and Adams 2012] Snoek, J.; Larochelle,
H.; and Adams, R. P. 2012. Practical bayesian optimiza-
tion of machine learning algorithms. In Advances in neural
information processing systems, 2951–2959.

[Swearingen et al.] Swearingen, T.; Drevo, W.; Cyphers, B.;
Cuesta-Infante, A.; Ross, A.; and Veeramachaneni, K. Atm:
A distributed, collaborative, scalable system for automated
machine learning.

[Swersky, Snoek, and Adams 2013] Swersky, K.; Snoek, J.;
and Adams, R. P. 2013. Multi-task bayesian optimization. In
Advances in neural information processing systems, 2004–
2012.

[Thornton et al. 2013] Thornton, C.; Hutter, F.; Hoos, H. H.;
and Leyton-Brown, K. 2013. Auto-weka: Combined selec-
tion and hyperparameter optimization of classification algo-
rithms. In Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining,
847–855. ACM.

[van den Bosch 2017] van den Bosch, S. 2017. Automatic
feature generation and selection in predictive analytics solu-
tions. Master’s thesis, Faculty of Science, Radboud Univer-
sity 3(1):3–1.

[Wauthier, Jordan, and Jojic 2013] Wauthier, F.; Jordan, M.;
and Jojic, N. 2013. Efficient ranking from pairwise compar-
isons. In International Conference on Machine Learning,
109–117.

[Zhong, Xiong, and Socher 2017] Zhong, V.; Xiong, C.; and
Socher, R. 2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning. CoRR
abs/1709.00103.

[Zoph and Le 2016] Zoph, B., and Le, Q. V. 2016. Neu-
ral architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578.

[Zoph et al. 2017] Zoph, B.; Vasudevan, V.; Shlens, J.; and
Le, Q. V. 2017. Learning transferable architectures for scal-
able image recognition. arXiv preprint arXiv:1707.07012
2(6).

ChicagoBicycle

O: <from_station_id> [all_fil(None), count_agg(None)]
G: For each <from_station_id> predict the number of records H:
Predict how many trips will start from this station tomorrow.

O: <from_station_id> [eq_fil(<usertype>), count_agg(None)]
G: For each <from_station_id> predict the number of records with <usertype> equal to__
H: Predict how many riders without an annual subscription will start a trip from this station tomorrow.

O: <from_station_id> [less_fil(<temperature>), majority_agg(to_station_id)]
G: For each <from_station_id> predict the majority of <to_station_id> in all related records with <temperature> less than__
H: For each station, predict which destination station people would go tomorrow during the hours when the temperature is lower than 0°C.

O: <from_station_id> [eq_fil(<gender>), count_agg(None)]
G: For each <from_station_id> predict the number of records with <gender> equal to__
H: Predict how many females will start a trip from this station tomorrow.

O: <from_station_id> [greater_fil(<usertype>), average_agg(None)]
G: For each <from_station_id> predict the average of <tripduration> in all related records with <temperature> greater than__
H: For each station, predict how long on average a user would ride during the hours when the temperature is higher than 30°C tomorrow.

FlightDelay

O: <AIRLINE> [all_fil(None), max_agg(<ARRIVAL_DELAY>)]
G: For each <AIRLINE> predict the maximum of <ARRIVAL_DELAY> in all related records
H: Predict the delayed time for each airline's most delayed flight tomorrow.

O: <AIRLINE> [less_fil(<ELAPSED_TIME>), sum_agg(<ARRIVAL_DELAY>)]
G: For each <AIRLINE> predict the total <AIRLINE_DELAY> in all related records with <ELAPSED_TIME> less than__
H: Predict the total flight delay tomorrow for each airline's short haul flights.

O: <AIRLINE> [greater_fil(<AIRLINE_DELAY>), majority_agg(<DESTINATION_AIRPORT>)]
G: For each <AIRLINE> predict the majority of <DESTINATION_AIRPORT> in all related records with <AIRLINE_DELAY> greater than __
H: For each airline, predict which destination is the most likely to have delays caused by the airline itself.

O: <ORIGIN_AIRLINE> [greater_fil(<DEPARTURE_DELAY>), count_agg(None)]
G: For each <ORIGIN_AIRPORT> predict the number of records with <DEPARTURE_DELAY> greater than__
H: Predict how many flights depart from this airport will be delayed more than 1 hour.

O: <AIRLINE> [eq_fil(<CANCELLATION_REASON>), majority_agg(<DESTINATION_AIRPORT>)]
G: Foreach <AIRLINE> predict the majority of <DESTINATION_AIRPORT> in all related records with <CANCELLATION_REASON>
equal to__
H: Predict which destination airport has the most number of flights canceled because of weather tomorrow.

YouTube

O: <channel_title>, [all_fil(None), count_agg(None)]
G: For each <channel_title> predict the number of records.
H: Predict how many videos from one channel will be selected as trending videos next month.

O: <channel_title>, [all_fil(None), min_agg(<views>)]
G: For each <channel_title> predict the minimum of <views> in all related records.
H: Predict the lowest number of views among all the trending videos from one channel next month.

O: <channel_title>, [less_fil(<view>), count_agg(None)]
G: For each <channel_title> predict the number of records with <likes> less than__
H: Among all the videos selected as trending videos from one channel next month, predict how many of them have less than 1k likes.

O: <category_id>, [all_fil(None), sum_agg(<comment_count>)]
G: For each <category_id> predict the total <comment_count> in all related records
H: Predict how many comments all tomorrow’s sport trending videos will have.

O: <category_title>, [eq_fil(<category_id>), sum_agg(<views>)]
G: For each <channel_title> predict the total <views> in all related records with <category_id> equal to__
H: Predict how many views next month’s trending political news videos from one channel will have.

Figure 4: Top rated prediction tasks on Chicago Bicycle, Flight Delay, and YouTube Trending dataset. O is the structural
representation of the task, including entity and a sequence of operations. G is the generated description of the task. H is the
human interpretation of the task.

Chicago Bicycle

2 4 6 8 10
#iterations

0

10

20

30

#t
op

n

pr
ob

le
m

s f
ou

nd PR = 10%
PR = 5%
LR = 10%
LR = 5%

Flight Delay

2 4 6 8 10
#iterations

0

10

20

30

#t
op

n

pr
ob

le
m

s f
ou

nd PR = 10%
PR = 5%
LR = 10%
LR = 5%

YouTube Trending

2 4 6 8 10
#iterations

0

10

20

30

#t
op

n

pr
ob

le
m

s f
ou

nd PR = 10%
PR = 5%
LR = 10%
LR = 5%

Figure 5: Interactive recommendation simulation results. We compare our model (LR) and uniform selection (PR) on three
datasets. For each method, we evaluate how many top-10% tasks (γ = 10%) and top-5% tasks (γ = 5%) are found in 10
interactive iterations. We run experiment 100 times and plot the average. We conducted the t-test for each of the comparisons
between PR and LR and found the significance level to be lower than or equal to 0.05.

	1.Introduction
	2.MLFriend Overview
	3.Related Work
	4.Automatic Prediction Task Generation
	4.1.Prediction Task Generation
	4.2.Prediction task operationalization

	5.Learning to Recommend Prediction Tasks
	5.1.Feature Representation for Task Recommendation
	5.2.Task Discovery Model

	6.Experimental Settings and Results
	6.1.Task Generation
	6.2.Building machine learning models
	6.3.Creating Ground Truth for Evaluation

	7.Discussion
	8.Conclusion and Future Work

