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ABSTRACT
Learning to Rank is an important framework used in search en-
gines to optimize the combination of multiple features in a single
ranking function. In the existing work on learning to rank, such a
ranking function is often trained on a large set of different queries
to optimize the overall performance on all of them. However, the
optimal parameters to combine those features are generally query-
dependent, making such a strategy of “one size fits all” non-optimal.
Some previous works have addressed this problem by suggesting a
query-level adaptive training for learning to rank with promising
results. However, previous work has not analyzed the reasons for
the improvement. In this paper, we present a Best-Feature Calibra-
tion (BFC) strategy for analyzing learning to rank models and use
this strategy to examine the benefit of query-level adaptive training.
Our results show that the benefit of adaptive training mainly lies
in the improvement of the robustness of learning to rank in cases
where it does not perform as well as the best single feature.
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1 INTRODUCTION
Learning to Rank (LTR) is an important general technique for opti-
mizing search engine results. Its general idea is to use training data
to learn a ranking function (model) by optimally combining a set of
features to minimize the errors on the training data. The common
practice of LTR is to train a single model on a single training set.
However, such a strategy of optimizing search results uniformly
for all the training queries is non-optimal for specific (test) queries
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because different queries often prefer a somewhat different way
to combine the features. Indeed, queries are so diverse that each
test query may potentially need a different version of the training
data. A strong assumption made by most current work on LTR is
that the optimal way to combine features is stable across different
queries (which makes it possible to learn from one set of queries
to optimize ranking for another set of different queries). However,
this assumption is generally invalid. Take, for example, the combi-
nation of BM25 score with the PageRank score of a document. It
is reasonable to believe that for some queries (e.g., informational
queries), BM25 score is a more important feature and thus should
have a higher weight than PageRank, but for others (e.g., naviga-
tional queries), PageRank may be much more important and thus
deserves a higher weight. This simple example suggests that there
is no single set of weights that would be optimal for all queries.
The current way of training an LTR ranking function using a set of
diverse queries would give us a model that is only optimal on aver-
age. A direct consequence of that is that even on the training set a
trained ranking function would never achieve perfect performance
no matter how much training data we have.

Query-specific features may help us address this problem by
enabling dynamic weights on features, but this requires a massive
amount of training data to allow a powerful learning algorithm to
learn the correct way to combine those features in a query-specific
way. Unfortunately, the search log data generally contain many
training instances for head queries with generally little training
data for tail queries. Such a skewed distribution of data means that
only very few head queries can potentially benefit from a non-linear
LTRmethod, while a large number of non-head queries would likely
suffer in such a global training method where the objective function
of optimization is inevitably biased toward head queries.

To address this problem, some previous work has studied how to
adapt the training set to better serve each individual test query, in-
cluding, e.g., training multiple models using subsets of the training
data and attempting to select the best model for a test query [1, 4, 5],
and using K-nearest neighbors for adaptive training [3]. The previ-
ous work has shown positive results from these strategies, showing
that it is beneficial to train multiple models based on clusters of
training queries, which can then be combined in a weighted manner
at the testing time. Such a strategy appeared to be especially effec-
tive for difficult queries and using a large number of clusters was
shown to be beneficial. However, previous work has not provided
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an explanation of what benefit the adaptive training has achieved
as compared to global training or why combining multiple models
tends to work better than attempting to automatically select the
right model for a test query. We speculate that one reason for this
is because it is unclear how we can perform this kind of analysis.

In this paper, we propose a novel Best-Feature Calibration (BFC)
method for analyzing the robustness of LTR models. Using this
method, we conduct an in-depth analysis of the benefit of query-
level adaptive training and show that the main benefit of the adap-
tive training strategy is in reducing the performance degradation
when LTR is ineffective (i.e., performing worse than the best sin-
gle feature). Our study also reveals that LTR can perform worse
than the best single feature on many queries if trained globally,
suggesting that the robustness of LTR may be a serious concern in
search engine applications as it may cause user dissatisfaction in
many cases. We further propose an error decomposition framework
for analyzing such a query-level adaptive training strategy and
suggest an explanation of why it has been challenging to automati-
cally predict the best model. Overall, our study enables us to better
understand the benefit of adaptive training in LTR and suggests
several promising future research directions on this topic.

2 CLUSTER-BASED ADAPTIVE TRAINING
The main idea explored in the previous work on query-level adap-
tive training is as follows: Training data are partitioned into clusters,
a separate LTR model is trained on each cluster, and the final rank-
ing is obtained by aggregating results from the models trained on
each cluster. Such a strategy has been shown to improve over the
baseline LTR trained with the entire training set. It is, however,
unclear what exactly the benefit of such a fusion-based adaptive
training strategy is as compared with the baseline LTR. In this
paper, we attempt to answer this question by using the following
approaches, which follow similar spirits to all the previous work.
Clustering approach:We represent each query q using a vector
representation ®q, which is computed using the mean of the feature
vectors of the relevant documents with respect to q. Using this
representation, we cluster the queries in the training set. (In this
paper, we use K-means clustering with Euclidean distance.)

Next, we refine the resultant clusters using the performance pro-
file of the queries in the different cluster models as follows. Given k
clusters (k = 5 in our experiments), for each training query we com-
pute evaluation measures for each of the k result lists, ranked by the
different clusters. Formally, ®q = (m1

1, ...,m
1
n , ...,m

k
1 , ...,m

k
n ); where

mi
j is the j’th evaluation measure of the query when the model of

cluster i was used for ranking. The idea behind this representation is
that queries that prefer similar LTR models (parameters) will likely
have a similar representation. In our experiments, we use the fol-
lowing evaluation measures: MAP@100, MRR@100, p@ {3, 5, 10},
and ndcд@ {3, 5, 10}. Then, using the new query representation,
we perform another round of clustering. The vector representation
of queries can be further modified using the new clusters obtained
and the process of clustering can be repeated several times. In this
paper, we performed two such steps.
Selective Cluster: To select a cluster for a test query, we use su-
pervised learning where our goal is to predict a cluster from a set of
clusters for each query. To represent each query for classification,

we first use a single strong feature (a feature which obtained the
highest performance on average in the training set) to rank the
result list of the query. Then, we use the average of the feature vec-
tors of the top 10 documents in the result list to represent the query.
Using the cluster assignments of the training queries as labels, we
learn a Logistic Regression model to predict a cluster. We contrast
the performance of this approach with an approach which selects a
cluster for a query using the query performance with respect to the
cluster model (serves as an upper bound). We denote this approach
Cluster Oracle in the experimental results section.
Cluster Fusion: As also shown in the previous work, the auto-
matic selection of the right cluster model is difficult, and combining
multiple cluster models tends to work better. Here we present
a general probabilistic fusion framework and use it to examine
the performance of fusion. Our goal is to measure the probability
that a document d is relevant to a query q, i.e., p(R=1|d,q), where
R ∈ {0, 1} is a binary random variable indicating relevance. Given
a set of clusters C , we can estimate this probability using the differ-
ent models that are learned using the different clusters as follows:
p(R=1|d,q) =

∑
c ∈C p(R=1|d,q, c) · p(c |q). Where p(R=1|d,q, c) is

the probability of relevance of d to q based on cluster c and p(c |q) is
the probability that the model learned using cluster c is a good fit to
query q. Intuitively, using p(c |q), we incorporate our uncertainty in
choosing the “correct” cluster for a query.We estimatep(R=1|d,q, c)
and p(c |q) in our experiments as follows. p(R=1|d,q, c) is estimated
using the normalized reciprocal rank of d in the result list generated
by the cluster c with respect to q. We estimate p(c |q) using a linear
interpolation as follows: p(c |q) = 0.5 · p(c |q) + 0.5 · p(c); where
p(c |q) is the probability learned using supervision in our selective
cluster approach and p(c) is proportional to the size of the cluster
(the number of training queries in the cluster). Our set of clusters
C is a union of the clusters generated in each step of the clustering
algorithm. Furthermore, we add to this set five clusters that are
generated randomly.

3 BEST-FEATURE CALIBRATION
The potential benefit of adaptive training is to better customize a
model for a test query, but it is unclear how we can analyze this
benefit quantitatively. To address this challenge, we propose a novel
Best-Feature Calibration (BFC) strategy to analyze the robustness
of an LTR model. The basic idea is to compare the performance
of LTR with that of the best-performing single feature. Intuitively,
if LTR is effective, we should expect its performance to be better
than that of the best single feature, whereas if LTR has been trained
non-optimally for a query, the performance of LTR may not be
better than that of the best single feature or even be worse. Thus,
BFC can serve as a general way to measure the robustness of LTR.
(In this paper, we chose this feature to be the one with the highest
average performance in terms of ndcд@5 in the training set.)

4 EXPERIMENTAL SETUP
Data sets:Weuse two publicly available data sets for the evaluation.
The first data set is the Microsoft LETOR 4.0 data set [6], which
was built using the GOV2 collection. We use the query set of 1,700
queries from the Million Query track of TREC 2007 (MQ2007); 46
features are provided. The data set is split into five folds. We use the



Table 1: The performance of the adaptive approaches for three groups of queries (grouped based on the difference between
their performance when using LTR and their performance when the single best feature is used). Statistically significant dif-
ferences with the corresponding LTR baseline approach and the single best feature are marked with ‘∗’ and ‘s’, respectively.

LETOR4 Yahoo
Low (25%) Medium (50%) High (25%) Low (25%) Medium (50%) High (25%)

MRR ndcд@5 MRR ndcд@5 MRR ndcд@5 MRR ndcд@5 MRR ndcд@5 MRR ndcд@5
Single Feature .651 .617 .618 .301 .278 .322 .906 .735 .949 .678 .735 .482
LambdaMart .364s .367s .619s .316s .713s .647s .827s .606s .949 .718s .905s .769s
Cluster Oracle .752∗ .645∗ .682∗ .430∗ .885∗ .717∗ .927∗ .756∗ .961∗ .782∗ .941∗ .822∗
Selective Cluster .479∗s .422∗s .568∗s .294∗ .584∗s .525∗s .854∗s .635∗s .941∗s .711∗s .871∗s .720∗s
Cluster Fusion .474∗s .456∗s .611 .326∗s .655∗s .572∗s .852∗s .635∗s .946∗s .717s .881∗s .737∗s

Single Feature .580 .586 .653 .294 .278 .365 .895 .747 .942 .662 .761 .503
AdaRank .345s .383s .653 .298s .579s .611s .822s .573s .942 .673s .902s .732s

Cluster Oracle .674∗ .643∗ .708∗ .383∗ .727∗ .677∗ .919∗ .781∗ .957∗ .742∗ .936∗ .766∗
Selective Cluster .398∗s .343∗s .537∗s .255∗s .457∗s .424∗s .863∗s .665∗s .935∗s .669∗s .852∗s .622∗s
Cluster Fusion .467∗s .466∗s .647 .299 .488∗s .521∗s .862∗s .665∗s .939∗s .671∗s .838∗s .635∗s
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Figure 1: Performance of the different groups of queries for different levels of failure of the LTR approach with respect to
using the single strong feature.

same folds and perform 5-fold cross-validation. The second data set
is the Yahoo Learning to Rank Challenge dataset [2]. This data set
was built based on the query log of the Yahoo search engine and
contains 29,921 queries and 519 features. The data set is originally
split into a training, test, and validation set and we use the same
partition in our experiments. (We do not perform cross-validation
here to make our results comparable to previous works.)
LTR algorithms and evaluation metrics: We use two LTR al-
gorithms, AdaRank [8] and LambdaMart [7], for evaluation. The
RankLib library is used to that end (sourceforge.net/p/lemur/wiki/
RankLib). For both algorithms, we use ndcд@5 as the measure for
optimization based on preliminary experiments to obtain a strong
baseline; all free parameters are set to default values. We report
the performance of the approaches usingMRR@100 and ndcд@5.
Statistically significant differences of performance are determined
using the two-tailed paired t-test at a 95% confidence level.

5 EXPERIMENTAL RESULTS
Our main results are shown in Table 1, where we compare both LTR
baselines (trained on all data), with Best Single Feature, Cluster
Oracle, Selective Cluster, and Cluster Fusion on both data sets.
Using the BFC strategy, we show the results by breaking down the
queries into three groups based on how well LTR performed as
compared with the best single feature. The low 25% bracket and
high 25% bracket include queries where LTR has the largest deficit
and largest surplus, respectively, as compared with the best feature.
From the table, we can make several interesting observations:

1) Both LambdaMart and AdaRank can perform significantly worse
than the best feature for a large number of queries on both data
sets, strongly suggesting that LTR is indeed not robust and cannot
learn optimal combinations of features when trained on all data.
2) Cluster Oracle consistently outperforms both the LTR baseline
and the best single feature, suggesting great potential for customiz-
ing the training data to improve accuracy; these are cases where
training using fewer (but more relevant) training data is clearly
better than training with all the data.
3) The overall accuracy of Selective Cluster is not good, suggesting
that it is hard to select the right cluster model. However, it is inter-
esting to note that it performs well on the low 25% queries. Since
those are the queries where LTR performed worse than the best
single feature, the results suggest that Selective Cluster can reduce
the degradation, likely because there is less bias for such queries
when trained with a cluster than when trained with all the data.
4) Cluster Fusion is generally better than Selective Cluster, sug-
gesting that the fusion strategy is indeed effective and robust, as
also consistently reported in the previous work. However, our de-
composed results reveal that the improvement is largely due to the
reduction of performance degradation on the queries where LTR
performed worse than the best single feature. Indeed, it is worse
than LTR on queries in the high 25% bracket, likely due to the use of
smaller amounts of data when each model is trained. This provides
a clear answer to the question about the benefit of adaptive training.

The benefit of adaptive training in improving the robustness
of LTR on queries where it performed worse than the best sin-
gle feature can be seen even more clearly from Figure 1, where



we plot the ndcд@5 values of multiple methods over a spectrum
of queries with different amount of degradation of LTR as com-
pared with the best single feature. Specifically, the X-axis shows
ndcд@5(LTR)-ndcд@5(SinдleFeature), and the Y-axis shows the
average performance of a method on queries for which this differ-
ence is similar1. From this figure, we can easily see that the slopes
of the curves of the adaptive training methods are flatter than both
the LTR curve and the best single feature curve, explaining the
benefit of adaptive training in improving the robustness of LTR.

One possible reason for this benefit is that those queries where
LTR performed worse than the best single feature are “minority”
(“outlier”) queries that prefer a very different way to combine fea-
tures than most queries in the training data, and they suffered sub-
stantially from using a model optimized for the average of all the
training data. However, by using clustering, we increase the diver-
sity of the models, ensuring that there exists at least one model that
can much better represent such a query than the globally trained
model. While Selective Cluster cannot select the right model ac-
curately in general, it is still generally beneficial for those outlier
queries because even if it ends up choosing the second best or even
third best cluster, the performance may still be better than the glob-
ally trained model. This explains why Selective Cluster tends to
show more benefit for the low 25% queries.

How can we explain why Cluster Fusion works clearly better
than Selective Cluster? One possible explanation is that taking a
(possibly weighted) average over all the models in fusion avoids
dominance by any single model (which can always be risky for
some outlier queries). Indeed, after combining multiple models,
the top-ranked document in each model is almost guaranteed to
show at a relatively high-ranked position. For example, if we use a
round-robin algorithm to take the top-ranked documents from each
of the k models to generate a final ranking, then the top-ranked
document of every model would have a rank at least as high as the
k-th rank. So, if one of the k models represents a query so well that
the top-ranked document is relevant, then the Reciprocal Rank for
this query cannot be lower than 1/k . Thus, unless a query cannot be
represented well by any of the k cluster models we considered, the
performance of the query cannot be too bad. This analysis also helps
explaining why previous work has found that adaptive training
tends to work better when using more clusters because with more
clusters, the chance of having at least one cluster representing every
test query well would be higher. Of course, the disadvantage of
using too many clusters is that each cluster has fewer training data
points, which may potentially hurt the performance. This suggests
that a very important question that should be further studied in
the future is: What kind of queries should be grouped together for
training? This is the same question as: What kind of queries can be
expected to prefer the same way of combining features?

This question prompts us to propose a general theoretical frame-
work for analyzing the errors in adaptive training, where we would
decompose the errors in adaptive training into two types: 1) errors
due to biased LTR model trained on the wrong training data (model
training error), and 2) errors due to inaccurate selection of a cluster
model (model selection error). The observed error on a test query
1More precisely, a single point in the graph corresponds to the average performance
of queries for which this difference is greater/equal than the corresponding value in
the X-axis and smaller than the adjacent value in the X-axis.

can thus be modeled as the sum of the model training error (MTE)
and the model selection error (MSE). Informally, this is to say an
error may be due to the lack of a model representing a test query
well or the inability of selecting the right model. This framework
can partially explain why Selective Cluster has not worked well.
This can be due to the fact that it is hard to minimize both MTE
and MSE. This is because in order to minimize MTE, ideally, the
query clusters should be formed by using the ground truth, but if
we do that, it would be impossible to represent a test query in the
same way (due to lack of ground truth for the test query), which
inevitably would cause a high MSE. Alternatively, we could sacri-
fice MTE by using a query representation that we can realistically
compute for test queries as well, and this may help reduce the MSE,
but it is unclear whether the benefit on MSE could compensate for
the loss on MTE. The MTE-MSE tradeoff is an interesting research
topic that clearly needs more research in the future.

6 CONCLUSIONS
In this paper, we have done an in-depth empirical analysis of the
benefit and challenge of adaptive training for LTR. We proposed
a novel Best-Feature Calibration (BFC) strategy for analysis of
LTR and used it to analyze the clustering-based adaptive training
approach. Our study reveals that LTR, when trained on the entire
data, can substantially perform worse than the best single feature
on many queries, suggesting that the robustness of LTR is a serious
concern in search engines as it can potentially negatively impact
the satisfaction of users. Our analysis further shows that the main
benefit of the clustering-based adaptive training is in reducing
the performance reduction of LTR when it performed worse than
the best single feature, and thus is a beneficial strategy that can be
adopted in search engines to improve the robustness of LTR. Finally,
we further provided an explanation of why fusion of clusters tends
to be more robust and proposed an error decomposition framework
for analyzing the errors of this approach.
Acknowledgments. This material is based upon work supported
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