
Empirical Analysis of Impact ofQuery-Specific Customization of
nDCG: A Case-Study with Learning-to-Rank Methods

Shubhra (Santu) K Karmaker
Auburn University

Auburn, Alabama, US

Parikshit Sondhi
Snap Inc.

Mountain View, California, US

ChengXiang Zhai
University of Illinois
Urbana, Illinois, US

ABSTRACT
In most existing works, nDCG is computed for a fixed cutoff 𝑘 , i.e.,
𝑛𝐷𝐶𝐺@𝑘 and some fixed discounting coefficient. Such a conven-
tional query-independent way to compute nDCG does not accu-
rately reflect the utility of search results perceived by an individual
user and is thus non-optimal. In this paper, we conduct a case study
of the impact of using query-specific nDCG on the choice of the
optimal Learning-to-Rank (LETOR) methods, particularly to see
whether using a query-specific nDCG would lead to a different con-
clusion about the relative performance of multiple LETOR methods
than using the conventional query-independent nDCG would oth-
erwise. Our initial results show that the relative ranking of LETOR
methods using query-specific nDCG can be dramatically different
from those using the query-independent nDCG at the individual
query level, suggesting that query-specific nDCG may be useful in
order to obtain more reliable conclusions in retrieval experiments.

ACM Reference Format:
Shubhra (Santu) K Karmaker, Parikshit Sondhi, and ChengXiang Zhai. 2020.
Empirical Analysis of Impact of Query-Specific Customization of nDCG:
A Case-Study with Learning-to-Rank Methods. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management
(CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3340531.3417454

1 INTRODUCTION
nDCG is a popular measure for evaluating information retrieval sys-
tems. Given a query and a ranked list of search results, computation
of 𝑛𝐷𝐶𝐺 involves summing the discounted gains of top 𝑘 docu-
ments, and normalizing by the maximum possible gain that may
be obtained for the query. The gain of each document is computed
based on its relevance label w.r.t. the query, typically obtained from
human experts or search logs, and discounted by a function of its
rank. 𝑛𝐷𝐶𝐺 can be interpreted as measuring the perceived utility of
search results by a user who does sequential browsing of the ranked
list up to the rank 𝑘 . The discounting coefficients account for the
decrease in probability that a user will in-fact review a document at
a lower rank, and the cut-off 𝑘 accounts for the possibility that the
user will not browse beyond position 𝑘 . With this interpretation of
𝑛𝐷𝐶𝐺 , we need to make the following decisions to effectively use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3417454

𝑛𝐷𝐶𝐺 : 1) What should be the value of the cutoff 𝑘? 2) What is an
optimal discounting factor for each position?

To accurately measure the perceived utility by a user for each
query, the cutoff 𝑘 must be set appropriately to accurately reflect
where a user who uses such a query is likely to stop browsing on
the ranked list. However, the current widely accepted practice for
cutoff is to set 𝑘 to a constant, typically aligned with the search
result page (SERP) size. For example, 𝑘 = 10 is very common. The
common practice for the discounting coefficients is to use a log
based discounting factor to unevenly penalize each position of the
search result. The base of the log (denoted by 𝑏) is usually set to
𝑏 = 2. Clearly, such a query-independent way of computing nDCG
is theoretically non-optimal as it does not accurately reflect the
perceived utility from a user’s perspective, making such a way of
using nDCG suffer from potentially very inaccurate measure of the
perceived utility by an actual user for each query.

The non-optimality of the current practice of computing nDCG
has already been noticed in multiple previous studies. For example,
[8] and [14] studied variations of discounting functions and gain
functions in the design of nDCG and suggested the importance
of selecting an appropriate instantiation of nDCG in evaluation.
However, they have not changed the common practice of using a
query-independent nDCG even in highly user-sensitive domains
like E-commerce search [9]. A main reason is that although the
common practice of using a fixed cutoff and base-2 logarithm is
theoretically non-optimal, we do not yet know empirically whether
using such an inaccurate measure of nDCG would actually change
any conclusion when comparing two retrieval methods or systems.
This question has not been studied in any previous work and is our
main research question.

To answer our research question, we conduct a case study of
how the 𝑛𝐷𝐶𝐺 obtained by popular LETOR methods are affected
if we vary the cutoff 𝑘 as well as discounting coefficient 𝑏 while
computing 𝑛𝐷𝐶𝐺 and verify whether the current practice of setting
𝑘 = 10 and 𝑏 = 2 is justified. Specifically, we vary these two
parameters of 𝑛𝐷𝐶𝐺 to obtain multiple variants of 𝑛𝐷𝐶𝐺 , which
can be interpreted as representing different users, and use each
variant to rank different LETOR methods. We want to see to what
extent the relative ranking of different LETOR methods would be
affected by the variation of those two parameters.

We experimented with eight popular LETOR methods includ-
ing RankNet [2], RankBoost [6], AdaRank [15], Random Forest [1],
LambdaMART [3], CoordinateAscent [10], ListNet [4] and L2 reg-
ularized Logistic Regression [5]. Experimental results show that
while the relative order of these LETOR methods in terms of their
obtained 𝑛𝐷𝐶𝐺 is moderately altered in the average case (average
on multiple queries), the relative order can be dramatically different
at the individual query level, suggesting that the current practice

https://doi.org/10.1145/3340531.3417454
https://doi.org/10.1145/3340531.3417454

of using non-optimal query-independent nDCG for choosing an
algorithm to be used in a search engine application has negatively
impacted the utility of the search engine.
2 EXPERIMENT DESIGN
2.1 Data Set
Weused the two popular LETOR datasets, i.e., “MSLR-WEB10K” [12]
and “MQ2007" [11] for our experiments. The first and second dataset
contains 10,000 and 1,700 queries respectively and have previously
been used as benchmarks for LETOR problems [7, 13]. Within these
datasets, each row corresponds to a query-document pair. The first
column represents relevance label of the pair, the second column
contains the query id, and the rest of columns represent features.
The relevance scores are represented by an integer scale between 0
to 4 for “MSLR-WEB10K” and between 0 to 2 for “MQ2007", where
0 means non-relevant and 4(2) means highly relevant. The larger
value the relevance label has, themore relevant the query-document
pair is. Features corresponding to each query-document pair is rep-
resented by a 𝑛 dimensional feature vector, where, 𝑛 = 136 for
dataset “MSLR-WEB10K" and 𝑛 = 46 for dataset “MQ2007". For
details on how the features were constructed, see [11] and [12].

To make the results comparable, we randomly sampled 1000
queries from both the “MSLR-WEB10K” and “MQ2007” datasets1.
The average number of documents associated with each query
was 119.06 and 41.47 for dataset “MSLR-WEB10K” and “MQ2007”
respectively. We kept all the features available (136 for “MSLR-
WEB10K” and 46 for “MQ2007”) for all the experiments conducted
in this paper.
2.2 Learning to Rank (LETOR) Methods
There are many LETOR methods proposed in the literature. Table 1
lists the popular LETOR approaches along with popular classifica-
tion and regression methods that have also been used for ranking
applications. For notational convenience, we assign abbreviations
to each method which are used throughout the rest of the paper.

Algorithm Short form Algorithm Short form
RankNet [2] RNet LambdaMART [3] LMART

RankBoost [6] RBoost CoordinateAscent [10] CA
AdaRank [15] ARank ListNet [4] LNet

Random Forest [1] RF Logistic Regression [5] L2LR
Table 1: Popular learning to rank algorithms

2.3 Research Questions
• Q1: How Average Behavior changes with Variable Cutoff?
How does the average 𝑛𝐷𝐶𝐺@𝑘 of a method change as we vary
𝑘 and how does that affect the relative performances of a group of
methods? Would a different 𝑘 lead to a different winner?
The purpose of this investigation is to see if varying𝑘 changes the
average performances (in terms of𝑛𝐷𝐶𝐺@𝑘) of different LETOR
methods significantly. To address this question, we vary 𝑘 among
5, 10, 15, 20 and 30 and report the average 𝑛𝐷𝐶𝐺@𝑘 achieved
by different LETOR methods. For each 𝑘 , we also report the
rank of each compared LETOR method induced by the 𝑛𝐷𝐶𝐺@𝑘

score it achieved. Note that, for all the experiments in this paper,
we report the average 𝑛𝐷𝐶𝐺@𝑘 of five-fold cross validation
experiments2.

1The exact datasets used for our the experiments can be found at the following link:
https://bitbucket.org/karmake2/practicalndcg/downloads/
2All the codes and evaluation scripts for experimentation can be found at the following
link: https://bitbucket.org/karmake2/practicalndcg/src

• Q2: How Query-Specific Behavior changes with Variable
Cutoff? How does variation of 𝑘 changes the 𝑛𝐷𝐶𝐺@𝑘 obtained
for individual queries? Does it affect the 𝑛𝐷𝐶𝐺@𝑘 score (for indi-
vidual queries) significantly enough to alter the ranks of a group of
methods being compared? For how many queries, would the conclu-
sion on the best performing method change if we used a different 𝑘
than 10? Which methods are more sensitive to the variation of 𝑘
compared to other methods?
The purpose of this investigation is to see how the 𝑛𝐷𝐶𝐺 score
for individual queries are affected if we vary 𝑘 . To answer this
question, we again vary 𝑘 among 5, 10, 15, 20 and 30 and compute
𝑛𝐷𝐶𝐺@𝑘 for each query and each LETOR method. Next, we
asked the following three questions from these statistics: 1) For
how many < 𝑞𝑢𝑒𝑟𝑦,𝑚𝑒𝑡ℎ𝑜𝑑 > pairs, the performance rank of
method changes as we vary 𝑘? 2) For how many queries, at least
one method changed its performance rank as we vary 𝑘? 3)For
how many queries, the best performer method for 𝑘 = 10 for
a particular query could not achieve the best performance for
some 𝑘 > 10 for the same query? We also examine for how many
queries, each method changes their performance rank as we
vary 𝑘 and compute the standard deviation of the rank values it
achieved for different 𝑘’s. This would allow us to examine which
methods are more sensitive to the variation of 𝑘 as well as which
are more robust.
Next, we look at how the best performer distribution changes
with variation of 𝑘 . For a particular 𝑘 , we compute the number of
queries for which each method obtained the highest 𝑛𝐷𝐶𝐺@𝑘 .
We then fix 𝑘 to a different number and compute the same best
performer counts again. This way, we examine how the best
performance counts for each method change as we vary 𝑘 . This
also provides a way to examine which 𝑘 is optimal for which
method.

• Q3:HowAverageBehavior changeswithVariableDiscount-
ing Coefficients? Here, we conduct similar average behavior
experiments as for Variable Cutoff (research question 1), except
that, instead of varying the cut-off 𝑘 , we fix 𝑘 = 10 and vary the
discounting coefficient 𝑏 among 2, 3, 4, 5 and 6 and finally, report
the average 𝑛𝐷𝐶𝐺 scores.

• Q4: How Query-specific Behavior changes with Variable
Discounting Coefficients? Here, we conduct similar query-
specific behavior experiments as for Variable Cutoff (research
question 2), except that, instead of varying the cut-off 𝑘 , we fix
𝑘 = 10 and vary the discounting coefficient 𝑏 among 2, 3, 4, 5 and
6 and finally, report the query-specific 𝑛𝐷𝐶𝐺 scores.

3 EXPERIMENT RESULTS
Q1 [Average Behavior with Variable Cutoff]: Table 2 and 3
summarizes the average performances of different LETOR meth-
ods for different values of 𝑘 , i.e., 𝑘 = {5, 10, 15, 20, 30} for “MSLR-
WEB10K" and “MQ2007" dataset respectively. First of all, for 𝑘 = 10
which is the widely accepted practice, LambdaMART achieves the
best performance for ‘MSLR-WEB10K" dataset with an 𝑛𝐷𝐶𝐺@10
score of 0.4298, while Random Forest turns out to be the best for
“MQ2007" dataset with 𝑛𝐷𝐶𝐺@10 equal to 0.4291. On the other
hand, the variance in the performance by different LETOR methods
is way higher for “MSLR-WEB10K" dataset than “MQ2007".

2

nDCG@
Method 5 10 15 20 30
ARank 0.3084 (5) 0.3377 (5) 0.3609 (5) 0.3807 (5) 0.4176 (5)
LNet 0.1529 (8) 0.1810 (8) 0.2044 (8) 0.2257 (8) 0.2658 (8)
RBoost 0.3164 (4) 0.3422 (4) 0.3630 (4) 0.3825 (4) 0.4185 (4)
RF 0.3860 (3) 0.4133 (3) 0.4338 (2) 0.4481 (2) 0.4777 (2)
RNet 0.1635 (7) 0.1924 (7) 0.2166 (7) 0.2360 (7) 0.2732 (7)
CA 0.3996 (2) 0.4150 (2) 0.4311 (3) 0.4443 (3) 0.4713 (3)
L2LR 0.2037 (6) 0.2431 (6) 0.2760 (6) 0.3023 (6) 0.3493 (6)

LMART 0.4058 (1) 0.4298 (1) 0.4449 (1) 0.4598 (1) 0.4892 (1)
Table 2: Relative performances of different LETORmethods
for variable 𝑘: Dataset “MSLR-WEB10K"

nDCG@
Method 5 10 15 20 30
ARank 0.3881 (4) 0.4156 (5) 0.4480 (5) 0.4797 (5) 0.5372 (5)
LNet 0.3754 (8) 0.4040 (8) 0.4347 (8) 0.4673 (8) 0.5272 (8)
RBoost 0.3834 (6) 0.4140 (6) 0.4490 (4) 0.4807 (4) 0.5355 (6)
RF 0.4020 (1) 0.4291 (1) 0.4590 (1) 0.4907 (1) 0.5470 (1)
RNet 0.3794 (7) 0.4118 (7) 0.4449 (7) 0.4751 (7) 0.5344 (7)
CA 0.3967 (2) 0.4261 (2) 0.4585 (2) 0.4880 (3) 0.5446 (2)
L2LR 0.3873 (5) 0.4159 (4) 0.4474 (6) 0.4780 (6) 0.5380 (4)

LMART 0.3913 (3) 0.4213 (3) 0.4562 (3) 0.4883 (2) 0.5432 (3)
Table 3: Relative performances of different LETORmethods
for variable 𝑘: Dataset “MQ2007"

For both the datasets and for each method, average 𝑛𝐷𝐶𝐺@𝑘

obtained by the method increases as we increase 𝑘 . For example,
LambdaMART achieves 𝑛𝐷𝐶𝐺 value of 0.4298 and 0.4892 for 𝑘 =

10 and 𝑘 = 30 respectively for “MSLR-WEB10K" dataset. This is
intuitive because the increase in ideal DCG is usually smaller than
the same for DCG obtained by different methods as we increase 𝑘 .
This is likely because the ideal DCG is based on the perfect ranking
and all the relevant documents are assumed to be ranked at the top
positions sorted by their relevance. Thus, ideal DCG has little room
to increase over DCG obtained by different methods as 𝑘 becomes
larger and thus, we see an increasing trend in 𝑛𝐷𝐶𝐺@𝑘 .

Finally, we report the ranks (in brackets) of different LETOR
methods induced by their 𝑛𝐷𝐶𝐺@𝑘 scores for different 𝑘’s. Re-
sults from Table 2 and 3 show that, performance rank change for
a LETOR method corresponding to varying 𝑘 is more common
in case of “MQ2007" dataset than “MSLR-WEB10K". For example,
AdaRank, RankBoost, Coordinate Ascent, L2LR and LambdaMART
all changed their performance ranks at least once as 𝑘 was varied
for “MQ2007" dataset (Table 3). While, for “MSLR-WEB10K" dataset,
only Coordinate Ascent and Random Forest switched their ranks
(Table 2). This means that, the common practice of setting 𝑘 = 10
while computing NDCG@k for comparing a set of LETOR methods
is not always optimal and setting 𝑘 to a different value can lead to
a different conclusion regarding their relative performances.
Q2 [Query-Specific Behavior with Variable Cutoff]: In com-
parison to the average behavior, the Query-Specific Behavior we
observed is even more interesting. Table 4 presents a brief summary
of the Query-Specific Behavior with respect to variable 𝑘 . We experi-
mented with 8 LETORmethods as before (Listed in table 1) and used
exactly the same pool of 1000 queries from both “MSLR-WEB10K”
and “MQ2007” datasets used for Average Behavior analysis. Thus,
there are 8000 <query, method> pairs in our experiment for each
dataset and out of these 8000 pairs, we found 5969 and 5641 pairs
from “MSLR-WEB10K” and “MQ2007” dataset respectively where
the method changed its rank (induced by the 𝑛𝐷𝐶𝐺@𝑘 score it
obtained) as we varied 𝑘 among {5, 10, 15, 20, 30}. This is a very

Statistic WEB10K MQ2007
Total # of Rank Change 5969/8000 5641/8000
of Queries with at least one change of rank 959/1000 813/1000
of Times the best performer is switched 449/1000 432/1000

Table 4: Summary of rank changes by different LETORmeth-
ods for individual queries with variable 𝑘

strong indication that 𝑛𝐷𝐶𝐺@𝑘 obtained by any particular LETOR
method for individual queries is highly sensitive to the variation
of 𝑘 . We also look at two more important statistics: first, out of
the 1000 queries we considered, we look at the number of queries
for which at least one of the LETOR methods changed its rank as
we varied 𝑘 . To our surprise, we found out the number to be 959
(“MSLR-WEB10K") and 813 (“MQ2007"). Beingmotivated by this, we
looked for a stronger case where we counted the number of queries
for which the best performing LETOR method for 𝑘 = 10 no longer
remains the best performing one at least for some 𝑘 > 10. Surpris-
ingly, this number was also very high, i.e, 449 (“MSLR-WEB10K")
and 432 (“MQ2007"). This means for almost half of the total queries,
the best performing LETOR method for 𝑘 = 10 is outperformed
by some other method when 𝑘 was set to some value greater than
10. All these results strongly suggest that 𝑛𝐷𝐶𝐺@𝑘 obtained by
different LETOR methods for individual queries are indeed sensi-
tive to the variation of 𝑘 and thus, query level customization of
𝑛𝐷𝐶𝐺 computation should be done for performance evaluation of
the search systems.

To further investigate the Query-Specific Behavior of 𝑛𝐷𝐶𝐺@𝑘

for variable 𝑘 , we look at statistics for individual methods. Table 5
presents these results. It reports the number of queries (out of
1000 queries) for which each LETOR method changed their rank
as we varied 𝑘 among {5, 10, 15, 20, 30}. In consistence with the
previous results, we found these numbers to be very high also for
both datasets . For example, in case of “MSLR-WEB10K" dataset,
Random Forest switched its rank for 812 queries as we varied 𝑘 . We
also report the standard deviation in the ranks achieved by each
method in Table 5. These results again demonstrate that varying 𝑘
has a huge impact on 𝑛𝐷𝐶𝐺@𝑘 obtained for an individual query.

Finally, to better analyze the Query-Specific Behavior of indi-
vidual methods, we report the number of queries for which each
method turned out to be the best performer. We report these best
performance counts by individual methods with variation of 𝑘 in
Table 6 for both datasets. For example, Table 6 reports that AdaRank
turned out to be the best performer for 161 queries (out of 1000
queries) for 𝑘 = 5 (MSLR-WEB10K dataset). However, for 𝑘 = 15, it
achieved best performance for only 126 queries. The same numbers
obtained by LambdaMART were 127 (𝑘 = 5) and 180 (𝑘 = 15) for
MQ2007 dataset.
Q3 [AverageBehaviorwithVariableDiscountingCoefficients]:
We found some evidence to the fact that average behavior is sensi-
tive to small variations in the Discounting Coefficients. For example,
consistently with the results of Variable Cut-off in case of “MSLR-
WEB10K" dataset (Table 2), we observe that Coordinate Ascent and
Random Forest switched their ranks as 𝑏 is increased from 2 (Ta-
ble 7). However, in contrast with the results of Variable Cut-off on
“MQ2007" dataset (Table 3), this time only AdaRank and RankBoost
switched their ranks (Table 8) [further details omitted due to lack
of space].

3

MSLR-WEB10K MQ2007
Method Rank Switch Rank STD Rank Switch Rank STD

RF 812/1000 0.6381 696/1000 0.7184
CA 801/1000 0.6344 715/1000 0.8174

RBoost 794/1000 0.6481 727/1000 0.7267
ARank 772/1000 0.6159 719/1000 0.8026
L2LR 716/1000 0.6126 669/1000 0.7218

LMART 708/1000 0.5865 663/1000 0.7434
RNet 693/1000 0.5209 733/1000 0.7342
LNet 665/1000 0.4807 719/1000 0.7066

Table 5: Statistics of rank changes by different LETORmeth-
ods for individual queries with variable 𝑘

MQ2007 MSLR-WEB10K
Method 𝑘 = {5, 10, 15, 20, 30} 𝑘 = {5, 10, 15, 20, 30}
ARank 422, 317, 291, 277, 253 161, 138, 126, 123, 123
LNet 45, 48, 47, 53, 52 17, 20, 22, 18, 19
RBoost 75, 94, 100, 96, 98 125, 109, 91, 105, 98
RF 121, 135, 139, 153, 163 171, 180, 200, 215, 197
RNet 78, 71, 59, 56, 54 52, 45, 42, 38, 36
CA 35, 65, 68, 68, 75 155, 181, 187, 173, 174
L2LR 97, 114, 116, 114, 124 59, 55, 61, 60, 66

LMART 127, 156, 180, 183, 181 260, 272, 271, 268, 287
Table 6: Best performance counts by different LETORmeth-
ods at individual query level with variable 𝑘

nDCG@10 for b=
Method 2 3 4 5 6
ARank 0.3377 (5) 0.3501 (5) 0.3562 (5) 0.3600 (5) 0.3626 (5)
LNet 0.1810 (8) 0.1923 (8) 0.1979 (8) 0.2013 (8) 0.2037 (8)
RBoost 0.3422 (4) 0.3545 (4) 0.3606 (4) 0.3643 (4) 0.3668 (4)
RF 0.4133 (3) 0.4256 (2) 0.4319 (2) 0.4358 (2) 0.4385 (2)
RNet 0.1924 (7) 0.2042 (7) 0.2100 (7) 0.2136 (7) 0.2160 (7)
CA 0.4150 (2) 0.4208 (3) 0.4243 (3) 0.4265 (3) 0.4281 (3)
L2LR 0.2431 (6) 0.2586 (6) 0.2662 (6) 0.2709 (6) 0.2742 (6)

LMART 0.4297 (1) 0.4402 (1) 0.4456 (1) 0.4490 (1) 0.4513 (1)
Table 7: Relative performances (𝑛𝐷𝐶𝐺@10) of different
LETOR methods for varying 𝑏: MSLR-WEB10K dataset.

nDCG@10 for b=
Method 2 3 4 5 6
ARank 0.4156 (5) 0.4288 (5) 0.4360 (5) 0.4407 (6) 0.4440 (6)
LNet 0.4040 (8) 0.4180 (8) 0.4255 (8) 0.4304 (8) 0.4338 (8)
RBoost 0.4141 (6) 0.4282 (6) 0.4360 (6) 0.4409 (5) 0.4444 (5)
RF 0.4291 (1) 0.4426 (1) 0.4499 (1) 0.4546 (1) 0.4579 (1)
RNet 0.4119 (7) 0.4259 (7) 0.4336 (7) 0.4386 (7) 0.4420 (7)
CA 0.4261 (2) 0.4400 (2) 0.4475 (2) 0.4524 (2) 0.4558 (2)
L2LR 0.4159 (4) 0.4302 (4) 0.4378 (4) 0.4427 (4) 0.4461 (4)

LMART 0.4213 (3) 0.4344 (3) 0.4417 (3) 0.4465 (3) 0.4499 (3)
Table 8: Relative performances (𝑛𝐷𝐶𝐺@10) of different
LETOR methods for varying 𝑏: MQ2007 dataset.

Statistic MSLR-WEB10K MQ2007
Total # of Methods Changed their rank 2457/8000 1674/8000
of Queries with at least one change of rank 701/1000 420/1000
of Times the best performer is switched 253/1000 126/1000

Table 9: Summary of rank changes by different LETORmeth-
ods for individual queries with variable 𝑏

Q4 [Query-Specific Behavior with Variable Discounting Co-
efficients] We found that the query level 𝑛𝐷𝐶𝐺 is indeed quite
sensitive to the variation of the discounting factor 𝑏 (Table 9, 10
and 11) and should be accounted for. For example, table 11 reports
that Coordinate Ascent turned out to be the best performer for 181
queries (out of 1000 queries) for 𝑏 = 2 in case of MSLR-WEB10K.
However, for 𝑏 = 6, it achieved best performance for only 167
queries. The same numbers obtained by Random Forest were 135
(𝑏 = 2) and 146 (𝑏 = 6) for MQ2007 dataset [further details omitted
due to lack of space].

MSLR-WEB10K MQ2007
Method Rank Switch Rank STD Rank Switch Rank STD
CA 368/1000 0.2057 214/1000 0.1316
RF 358/1000 0.2015 200/1000 0.1289

RBoost 354/1000 0.2130 214/1000 0.1347
LMART 350/1000 0.2012 229/1000 0.1658
ARank 341/1000 0.1997 213/1000 0.1342
L2LR 272/1000 0.1585 201/1000 0.1253
RNet 225/1000 0.1264 199/1000 0.1230
LNet 189/1000 0.1050 204/1000 0.1224

Table 10: Statistics of rank changes by different LETOR
methods for individual queries with variable 𝑏

MQ2007 MSLR-WEB10K
Method 𝑏 = {2, 3, 4, 5, 6} 𝑏 = {2, 3, 4, 5, 6}
ARank 317, 320, 320, 319, 319 138, 140,143,144,145
LNet 48, 46, 45, 47, 48 20, 20, 20, 20, 20
RBoost 94, 95, 88, 90, 90 109 , 107, 106, 105, 108
RF 135, 145, 149, 149, 146 180, 186, 190, 200, 201
RNet 71, 71, 70, 67, 67 45, 43, 45, 43, 44
CA 65, 67, 67, 64, 64 181, 171, 171, 171, 167
L2LR 114, 109, 112, 114, 115 55, 52, 53, 54, 55

LMART 156, 147, 149, 150, 151 272, 281, 272, 263, 260
Table 11: Counts of best performance achieved by different
LETOR methods at individual query level with variable 𝑏

In summary, an overall conclusion we can draw through our
study is that the current common practice of using a query-independent
fixed cutoff and query-independent discounting coefficients is prob-
lematic and query-specific nDCG may be useful in order to obtain
more reliable conclusions in retrieval experiments.

REFERENCES
[1] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. ACM, 89–96.

[3] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11 (2010), 23–581.

[4] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[5] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. 2008. LIBLINEAR: A library for large linear classification. The Journal of
Machine Learning Research 9 (2008), 1871–1874.

[6] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient
boosting algorithm for combining preferences. The Journal of machine learning
research 4 (2003), 933–969.

[7] Yasser Ganjisaffar, Rich Caruana, and Cristina Videira Lopes. 2011. Bagging
gradient-boosted trees for high precision, low variance ranking models. In Pro-
ceedings of the 34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval. ACM, 85–94.

[8] Evangelos Kanoulas and Javed A Aslam. 2009. Empirical justification of the gain
and discount function for nDCG. In Proceedings of the 18th ACM conference on
Information and knowledge management. ACM, 611–620.

[9] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.
On application of learning to rank for e-commerce search. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 475–484.

[10] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[11] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[12] Tao Qin and Tie-Yan Liu. 2010 (Accessed: 2018-01-20). Microsoft Learning to Rank
Datasets. https://www.microsoft.com/en-us/research/project/mslr/

[13] Shilpa Shukla, Matthew Lease, and Ambuj Tewari. 2012. Parallelizing ListNet
training using spark. In Proceedings of the 35th international ACM SIGIR conference
on Research and development in information retrieval. ACM, 1127–1128.

[14] Ellen M Voorhees. 2001. Evaluation by highly relevant documents. In Proceedings
of the 24th annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 74–82.

[15] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for information
retrieval. In ACM SIGIR. ACM, 391–398.

4

http://arxiv.org/abs/1306.2597
https://www.microsoft.com/en-us/research/project/mslr/

	Abstract
	1 Introduction
	2 Experiment Design
	2.1 Data Set
	2.2 Learning to Rank (LETOR) Methods
	2.3 Research Questions

	3 Experiment Results
	References

