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Abstract
As we begin to see low-powered computing
paradigms (Neuromorphic Computing, Spiking
Neural Networks, etc.) becoming more popular,
learning binary word embeddings has become
increasingly important for supporting NLP ap-
plications at the edge. Existing binary word
embeddings are mostly derived from pretrained
real-valued embeddings through different sim-
ple transformations, which often break the se-
mantic consistency and the so-called “arith-
metic” properties learned by the original, real-
valued embeddings. This paper aims to address
this limitation by introducing a new approach to
learn binary embeddings from scratch, preserv-
ing the semantic relationships between words
as well as the arithmetic properties of the em-
beddings themselves. To achieve this, we pro-
pose a novel genetic algorithm to learn the re-
lationships between words from existing word
analogy data-sets, carefully making sure that
the arithmetic properties of the relationships
are preserved. Evaluating our generated 16,
32, and 64-bit binary word embeddings on
Mikolov’s word analogy task shows that more
than 95% of the time, the best fit for the anal-
ogy is ranked in the top 5 most similar words
in terms of cosine similarity.

1 Introduction

Word embeddings see very common use in many
widely-adopted NLP applications, e.g., document
summarization (El-Kassas et al., 2021), sentiment
analysis (Yadav and Vishwakarma, 2020), entity
extraction (Li et al., 2020), question answering (Jin
et al., 2022), etc. However, the majority of
commonly-used word embeddings are far too de-
manding in terms of energy and computational re-
sources required to train and load them, making
state-of-the-art word embeddings unsuitable for
use in a low-energy environment, like in an internet
of things (IoT) device (Zadeh et al., 2020; Wang
et al., 2020; Daghero et al., 2021) or in a Neuro-
morphic processor (Schuman et al., 2022; Davies

et al., 2021). As we observe these low-powered de-
vices entering the mainstream, we become increas-
ingly aware of our inability to use typical word
embeddings in those environments, since typical
word embeddings usually require multiple giga-
bytes for storage and hundreds (if not thousands) of
floating-point multiplications to capture meaning-
ful relationships between words. Furthermore, low-
energy neuromorphic computers in particular are
based on binary “spiking” inputs and perform cal-
culations using “accumulation” (sum) operations,
therefore not supporting floating-point operations
(Poon and Zhou, 2011; Davies et al., 2021). Hence,
real-valued embeddings are of little use to these
low-energy computing paradigms, which is our
main motivation for learning high-quality binary
embeddings.

An intuitive way to address this issue is to take
the pretrained real-valued word embeddings and
directly binarize them so they can be easily used
as a spike train for input to a neuromorphic pro-
cessor. The potential benefits of this approach
are astronomical, as the vector’s size can be re-
duced by more than 95% and the number of op-
erations needed goes down significantly (Tissier
et al., 2019). As an example, calculating the simi-
larity between two words goes from requiring O(n)
floating-point operations to 2 binary operations: an
XNOR and a bit-count operation. However, one
of the primary issues to address when binarizing
word embeddings is making sure that this oversim-
plification in word representation does not cause a
significant drop in semantic and syntactic accuracy
of the learned embeddings. In other words, bi-
nary embeddings still need to encode semantic and
syntactic information properly so that meaningful
relations can be captured when these embeddings
are used.

The simplest approach for creating binary em-
beddings is to quantize the real-valued embedding
vectors into binary labels based on some thresh-



olds (Faruqui et al., 2015). While the thresholding
approach is simple, it often breaks the semantic
relationships learned by the real-valued vectors, as
an infinite range of real-valued numbers are forced
to map into one/zero labels without considering
the loss in semantic consistency during the pro-
cess. Another approach is to learn an auto-encoder
which can transform a real-valued embedding vec-
tor into a binary vector while minimizing the loss
in semantic consistency during the process (Tissier
et al., 2019). However, this process still assumes
that high-quality, real-valued embeddings are al-
ready available, and their experimental results show
that the binary embeddings learned this way fail
to achieve comparable performance against real-
valued embeddings in both Semantic and Syntactic
Analogy tasks (Tissier et al., 2019).

To address these limitations, we propose to learn
binary embeddings from scratch, which will guar-
antee the preservation of the semantic and syntactic
relationships between words even in the restricted
binary latent space. Our primary motivation for
proposing this method is to take a step forward
towards enabling NLP in the emerging low-power
neuromorphic computing paradigm. We envision
using this binary embedding as an encoded input
to Spiking Neural Networks (SNNs), providing a
compact spike-representation for words to be pro-
cessed in downstream NLP tasks. Furthermore,
since SNNs currently have difficulty learning with
methods supported by backpropagation (Luo et al.,
2022), we opt to utilize a method that has no need
for it, i.e., a Genetic Algorithm (Holland, 1992).

Genetic algorithms are a class of methods for
solving both constrained and unconstrained opti-
mization problems based on the concept of “sur-
vival of the fittest” (Holland, 1992), and naturally
they fit binary representations intuitively because
of the crossover and mutation operators associated
with them (Katoch et al., 2021). However, one com-
mon criticism of genetic algorithms is their slow
convergence (Vie et al., 2020). We propose to ad-
dress this limitation by designing an objective func-
tion which is guided by high quality analogy exam-
ples to facilitate faster convergence. To be more
specific, in a typical embedding training process,
the final encoding is learned by observing word
co-occurrences (Mikolov et al., 2013b), which is
often very noisy. In contrast, our proposed method
learns this encoding using a data-set of high-quality
targeted analogies, allowing for a more focused un-

derstanding of the relationships between words in a
curated vocabulary and a faster convergence while
training. This becomes especially useful for IoT
applications, where a full vocabulary may not be
necessary as opposed to a smaller collection of
relevant words. Another major benefit of the pro-
posed approach is that it can learn the goal “binary”
embeddings without worrying about the hassles of
implementing backpropagation in spiking neural
networks.

Experiments with the evolved 16-, 32-, and 64-
bit binary word embeddings on the word analogy
task (Mikolov et al., 2013a) show that more than
95% of the time, the best fit for the analogy is
ranked among the top 5 most similar words in the
vocabulary. This demonstrates that the proposed
technique is effective as well as useful.

The rest of the paper is organized as follows:
Section 2 presents the related works. Next, Sec-
tion 3 provides some basic background on ge-
netic algorithms and evolutionary operators. Sec-
tion 4 presents the details of the proposed evolu-
tionary training process followed by our experi-
mental setup (Section 5) and experimental results
(Section 6). Finally, we conclude the paper in Sec-
tion 7.

2 Related Works

2.1 Language Modeling
Word Embeddings: Classical word embeddings
capture semantic and syntactic information by ob-
serving word co-occurrences and predicting ei-
ther the target word or the context given the other
one (Mikolov et al., 2013a). This helps learn rela-
tionships among words that, surprisingly enough,
can be largely represented with arithmetic expres-
sions of the word vectors themselves. These mod-
els are then improved upon with the introduction of
Negative Sampling as a replacement to the hierar-
chical Softmax layers originally used by (Mikolov
et al., 2013b). Another option for learning word
embeddings is to utilize global word co-occurrence
counts (Pennington et al., 2014), on the intuition
that the ratios between word co-occurrences en-
code more information than the raw co-occurrence
counts, which results in the commonly-used word
embedding, GloVe.

Contextual Word Embeddings: Contextual word
embeddings can encode how the meaning of a word
changes with its context (Peters et al., 2018). As
context-based embeddings gained traction, we be-



gan to see their use as a part of transformer archi-
tectures (Devlin et al., 2019; Lewis et al., 2019).
However, encoding contextual information to that
extent sits outside the current scope of this paper.

N-Gram and Sentence Embeddings: Beyond
word embeddings, researchers have proposed meth-
ods that encode larger language constructs, such
as n-grams (Bojanowski et al., 2017) or sentences
(Conneau et al., 2017; Cer et al., 2018), but those
are also beyond the scope of this paper as we focus
exclusively on word embeddings.

2.2 Efficient NLP

Over the past few years, some NLP research has
trended towards making existing methods more
efficient, but these research directions primarily fo-
cus on distilling transformer architectures to get
a similar-performing, smaller model (Sanh et al.,
2019; Jiao et al., 2019; Sun et al., 2020; Iandola
et al., 2020). While these advances help improve
the efficiency of contextualized word embeddings,
they do not help in the case of binary representa-
tions.

Neuromorphic Computing Neuromorphic com-
puting is a relatively newer field, providing incredi-
bly low-powered hardware with a new architecture
called a spiking neural network (SNN) (Poon and
Zhou, 2011; Davies et al., 2021; Roy et al., 2019).
At present, SNNs are difficult to train, exclusively
requiring spike inputs and lacking support for typi-
cal backpropagation and commonly-used activation
functions. As a result, the common workaround
thus far is to train a neural network in the real-
valued domain and convert it to a spiking neural
network (Sengupta et al., 2019). The advances
made in SNNs so far have mainly been in computer
vision (Kim and Panda, 2021) and signal process-
ing (Auge et al., 2021), but it shows promise as a
wide-use field for efficient, powerful learning.

Binary Word Embeddings: To execute NLP tasks
in the Neuromorphic Computing paradigm, we
need to provide binary/spike inputs. This is where
binarization techniques become relevant. (Joulin
et al., 2016) proposed a hash-based clustering tech-
nique for learning binary embeddings, where they
concatenated the binary codes of the closest cen-
troids for each word. Another method is to trans-
form an existing real-valued embedding to a binary
embedding using an auto-encoder (Tissier et al.,
2019), and yet another method is to learn correla-
tions between one-hot encoded context and target

blocks (Liang et al., 2021).

2.3 Genetic Algorithms

Genetic algorithms (Holland, 1992) often find use
in solving optimization problems for which an ex-
act mathematical problem definition is either diffi-
cult to create or cannot be calculated given the prob-
lem constraints (Sivanandam and Deepa, 2008).
However, due to their general ease of use in solv-
ing optimization problems, they find some use in
recent NLP research (Karcioğlu and Yaşa, 2020;
Ince, 2022). More details are provided in Section 3.

2.4 Difference From Previous Work

Our approach, in contrast to previous word em-
bedding binarization methods, aims to learn word
embeddings from scratch for use in downstream
applications in SNNs. In order to best adhere to
that end, we opt to not employ backpropagation,
making our problem a bit more difficult to solve
with classical methods. Due to that, we decide to
utilize a genetic algorithm to generate binary em-
beddings, framed as a problem of optimizing how
much semantic/syntactic information it can encode
from a curated set of analogistic relationships.

3 Background on Genetic Algorithm

Genetic Algorithms are a family of computational
models inspired by evolution (Kumar et al., 2018).
These algorithms encode a potential solution to a
specific problem through a simple chromosome-
like data structure and apply recombination oper-
ators to these structures so as to preserve critical
information. Genetic algorithms are often viewed
as function approximators, although the range of
problems to which evolutionary algorithms have
been applied is quite broad (Deb, 2011).

An implementation of a Genetic Algorithm be-
gins with a population of (typically random) chro-
mosomes. One then evaluates these structures and
allocates reproductive opportunities in such a way
that those chromosomes which represent a bet-
ter solution to the target problem are given more
chances to reproduce than the chromosomes which
are poorer solutions. The “goodness” of a solution
is typically defined w.r.t. the current population.

3.1 The Terminologies

A few terms must be explained before we go into
our proposed algorithm in detail.



Population: The population contains µ candidate
solutions. The key idea here is to update this pop-
ulation iteratively so that one can end up with the
best solution. The initial population contains near-
random solutions, and the goal of the population is
to evolve a better solution over time using genetic
recombination operators.

Individual and Allele: Each of the µ members
of the population is referred to as an individual or
chromosome. Each individual consists of a number
of attributes, called genes. Each gene in turn may
be associated with some values, which are called
alleles. Alleles are optional and not always present.

Fitness Function: There is a function which eval-
uates an individual, i.e. assigns a score on the
basis of how “good” it is. Therefore, this function
assigns higher scores for “good” individuals and
lower scores for “bad” individuals. This function
is known as a fitness function.

3.2 Evolutionary Operators

The operators in an evolutionary algorithm are
quite similar to biological evolution in nature. A
brief overview of the operators is as follows.

Selection: The idea of selection is to pick chro-
mosomes from the population that have the best
chance at improving the overall fitness of the popu-
lation in the next iteration. To achieve this, (1−r)µ
individuals from the best individuals in the popula-
tion are chosen, where r is the fractional number of
chromosomes to be replaced at each step. How do
we sort out the best individuals? The idea is simple,
based on a threshold called the fitness threshold.
The fitness threshold works as a filter: chromo-
somes with fitness values higher than this thresh-
old are considered to be in the next generation,
while the lower values are discarded. However, fit-
ness thresholds are not always present, such as in
Roulette Wheel Selection (used in this work), to be
described next.

Roulette Wheel Selection: In Roulette Wheel Selec-
tion (Lloyd and Amos, 2017), no individuals are
discarded directly regardless of their fitness scores.
Rather, the normalized fitness score of individual i
is returned by the fitness function, as indicated by
equation 2, and selection is done in a probabilistic
fashion using the following formula.

pi =
fi∑|P |
j=1 fj

(1)

Where P is the population, pi is the probability
of chromosome i being selected, and both fi and fj
are the fitness of chromosome i or j, respectively.
Tournament Selection: In Tournament Selec-
tion (Butz et al., 2003), two individuals are first cho-
sen at random from the current population. With
some predefined probability p, the higher-scoring
individual of these two is selected, and with prob-
ability (1− p), the lower-scoring individual is se-
lected.

Crossover: For crossover, a pair of individuals are
chosen according to a predefined selection strategy.
For each selected pair, a new pair is generated by
the crossover operator. The newly generated off-
spring pairs are added to the new population (Pavai
and Geetha, 2016). Below, We discuss some vari-
ants of crossover.

Single Point Crossover: It is the simplest form of
crossover, where the first n bits of the first offspring
come from the first parent, followed by bits from
the second parent. Similarly, the second offspring
consists of bits from the second parent followed by
bits from the first.

Two Point Crossover: Two point crossover works
exactly like single point, except for one key differ-
ence. Here, the first few bits of the first offspring
come from the second parent. Then, a few bits
from the first parent are present, followed by more
bits from the second parent, terminating the string.

Uniform Crossover: A more complicated version
is uniform crossover, where each bit in each off-
spring can come from any parent with a particular
probability, which is defined by the user.

Mutation: Mutation is an operator which alters
one or more gene values with a small probabil-
ity (Hall et al., 2020). It is used to maintain di-
versity in the solution, since as the algorithm con-
verges we have no way of knowing whether we
have found a local optima or the global optima.
Mutation is used to help alleviate this problem,
creating diversity in the solution space (Do et al.,
2021).

4 Evolutionary Pretraining of Binary
Word Embeddings

In this section, we describe the details of the evo-
lutionary pretraining process to learn binary word
embeddings from scratch which is guided by a
collection of word analogy examples.



Figure 1: Chromosome Representation

4.1 Chromosome Representation and
Initialization

To start, we initialize a population, P , containing µ
individual chromosomes, where µ is a configurable
parameter. As shown in Figure 1, each chromo-
some is a candidate solution, i.e., a full set of word
embeddings for the given vocabulary. Each gene in-
side a chromosome represents a unique word from
the vocabulary and each gene/word consists of d
alleles (d is a user-defined hyper-parameter). Here,
each allele is essentially a bit of the binary word
embedding vector. Therefore, the chromosome is
essentially a sequence of words where each word
is a bit vector.

Chromosomes are constructed by randomly ini-
tializing a binary vector of dimension d for each
word in the entire vocabulary, V . This results in a
chromosome with a total length of (V × d) bits for
evolutionary learning.

4.2 Evaluation and Fitness Function

Appropriate evaluation of a chromosome requires
designing an accurate fitness function, which can
measure the goodness of a candidate solution. Fit-
ness functions are central components of evolution-
ary learning and are often the most challenging
task. Indeed, when can we say that an embedding
is good/bad? One option is to use the embedding
for a downstream NLP task and measure the ac-
curacy for that task as the fitness of the chromo-
some/candidate embedding. However, such indi-
rect evaluation results may not hold in general for
other downstream NLP tasks. Another option is
to use the embedding for a wide variety of down-
stream tasks and compute their average accuracy as
the fitness score. However, computing the fitness
score in this fashion will be very time-consuming
for an evolutionary algorithm to converge, as thou-
sands of evaluations are needed to find a reasonably
“good” solution and hence, it is impractical.

To address this challenge, we propose to eval-

uate chromosomes in terms of their capability to
capture the the semantic/syntactic relationships be-
tween words explicitly using a set of word analogy
examples. Mathematically, we evaluate each chro-
mosome with the following fitness function, F .

F =
∑
ai∈A

BitCount({(ai[1]⊕ ai[2]) ∨ ai[3]} ⊙ ai[4]))

(2)

Here, A is the set of word analogy examples,
with each analogy ai having four words in the
form first− second+ third = fourth, and the
BitCount() operation counts the number of bits
that are set to 1. The intuition behind this fitness
function is primarily to enforce additive composi-
tionality, as described in (Mikolov et al., 2013b),
between the learned binary vectors, with the XOR
operation (⊕) serving as our bit-wise “subtraction”
operation and the OR operation (∨) serving as our
bit-wise “addition” operation. The intuition behind
these choices are as follows: the XOR operation
outputs 1 when the input bits are different, there-
fore, it can serve as a proxy for the difference be-
tween two inputs in the binary domain. Similarly,
we use the bit-wise OR operation to serve as a
proxy for addition in the binary space. By compar-
ing how closely the composition of the first three
words (first− second+ third) approximates the
representation of the fourth word in the analogy
(calculated by XNOR-ing the composition of the
first three words and the fourth word), we ensure
that compositionality is maintained as a property of
the embeddings for the relationships portrayed in
the analogies provided. In other words, equation 2
enforces the following constraint:

“Given a word analogy example ai in the form
of first − second + third = fourth, minimize
the Hamming Distance between vectors (first−
second+ third) and fourth”.

4.3 Evolutionary Operators
To make sure we evolve our candidate embeddings
effectively, we define a set of evolutionary oper-



ators with which to generate new chromosomes.
For parent selection, we adopt two approaches: 1)
Random selection and 2) Roulette Wheel selection.

Figure 2: Uniform crossover operation. Green bits are
being passed down to the offspring, and yellow bits
were mutated after crossover.

Our crossover operation, as shown in Figure 2,
takes as input two parent chromosomes (C1 and C2)
from the population and runs a uniform crossover
operation, where each parent has an equal proba-
bility of contributing any given bit to the resulting
offspring. Furthermore, each bit contributed to the
offspring has a probability ϵ of mutating (bit-flip),
that helps ensure diversity in the population.

Figure 3: Mutation operation. Yellow bits were flipped
as a result of the mutation operation.

In addition to being part of the crossover op-
erator, we also make use of an explicit mutation
operation. This operation, as shown in Figure 3,
takes in a chromosome, C, and a percentage pa-
rameter, δ, from the population as input, returning
an offspring with (δ ∗ |C|) bits flipped.

4.4 Offspring Replacement Strategy
In every generation (iteration) of our algorithm,
we maintain a µ+ λ replacement strategy; where
we generate λ new chromosomes every generation,
add them to the population, and then remove the
λ worst performers. This results in a consistent
population size, no matter how many generations
happen, as shown in Figure 4.

Finally, in addition to our previously-outlined
genetic operations, we replace one of the non-top-
performing chromosomes in our population with
a completely random chromosome (after selecting
our λ worst performers and removing them) at an
interval, γ. This random replacement ensures that

as the generations continue, we occasionally see
new random solutions inserted that have a chance
to help the population escape a local maxima.

5 Experimental Setup

5.1 Dataset

For our experiments, we used Mikolov’s word anal-
ogy task data-set (Mikolov et al., 2013b), which
is comprised of 936 vocabulary words, 8, 869 se-
mantic analogies, and 10, 675 syntactic analogies.
For evolutionary pretraining, we split this data-set
into five folds and do five-fold cross validation, i.e.,
we train a binary embedding on four folds’ data
and test on the remaining fold. In other words,
each fold is considered as the testing set once and
consists of about 3, 900 unseen analogies from the
whole data-set.

5.2 Implementation Details

As part of implementation, we used the follow-
ing set of parameters: population size (µ) of 25,
crossover mutation probability (ϵ) of .01, mutation
probability (δ) of .0025, random insertion interval
(γ) of 5000, and dimensions (d) of 16, 32, and
64. In each generation, we generated 5 unique off-
spring: 2 from crossover (one with roulette wheel
selection and one with random selection), and 3
mutations (two with roulette wheel selection and
one with random selection).

5.3 Evaluation Metrics

For testing, the goal of the word analogy task is to
find the fourth word in an analogy of the form “a1 is
to a2 as a3 is to a4”. Our evaluation first computes
the binary vector a1−a2+a3 and ranks the closest
neighbors by distance. As mentioned before, we
use the bitwise XOR operation as subtraction and
the bitwise OR operation as addition.

Using this task, we report the mean reciprocal
rank (MRR) as our primary evaluation metric for
the generated binary embeddings, along with top-1
and top-5 accuracy scores for each fold. For a given
set of analogies, we define MRR as the following:

MRR =
1

|A|

|A|∑
i=1

1

ranki
(3)

where A is the collection of analogies and ranki
indicates the ordinal position of the correct fourth
word in the analogy.



Figure 4: µ+ λ selection strategy. The left side indicates the population at the beginning of the current generation,
the blue chromosomes indicate newly-generated offspring, and the right side indicates the new population after the
λ lowest-performing chromosomes are removed.

6 Results

6.1 Convergence

Figure 5 shows how each size of binary embedding
converges as each generation evolves. As depicted,
the smaller embeddings converge much faster, with
16-bit embeddings taking roughly 125,000 genera-
tions to converge, whereas 64-bit embeddings take
more than 400,000 generations to converge.

Figure 5: Training convergence for 16, 32, and 64-bit
embeddings over 400K generations. Fitness values for
each dimension are scaled to [0, 1] for easy comparison.

Furthermore, as shown in Figure 6, the testing
performance over time closely mirrors the training
convergence. Once again, our 16-bit embedding
converges faster than our 64-bit embedding, but it
ultimately converges to a lower performance, as
shown in Tables 1 and 2, reaching an average MRR
of 0.65 whereas the 64-bit embedding reaches an
average MRR of 0.68.

Figure 6: Testing performance for 16, 32, and 64-bit
embeddings over 400,000 generations. Performance
values for each dimension are scaled to [0, 1] for ease of
comparison with the embeddings’ training convergence.

6.2 Quantitative Evaluation

Our embeddings’ performances are recorded in Ta-
ble 1, and from this performance, we can make
a few observations. First off, 16-bit embeddings
work fairly well on this task due to its small vocab-
ulary size. However, this result may not hold up as
the vocabulary size scales closer to the 16-bit max-
imum of 65,536. As the vocabulary scales past that
point, we expect that slightly larger embeddings,
like 32-bit embeddings, will outperform 16-bit em-
beddings by a clear margin, a hypothesis we plan
to test in our future work.

We also record our embeddings’ top-1 accuracy,
indicating how well they perform on the analogy
task in terms of semantic/syntactic correctness. As
shown in Table 2, performance scales similarly to
each embedding’s MRR performance, which is not
surprising. Furthermore, the top-1 accuracy also



Bits Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg
16 0.69 0.66 0.63 0.65 0.64 0.65
32 0.66 0.73 0.67 0.67 0.66 0.68
64 0.65 0.69 0.68 0.71 0.66 0.68

Table 1: Mean Reciprocal Rank (MRR) totals for each
fold, evaluated against the full analogy set.

Bits Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg
16 0.46 0.41 0.35 0.39 0.36 0.39
32 0.38 0.51 0.41 0.41 0.40 0.42
64 0.37 0.44 0.42 0.48 0.39 0.42

Table 2: Percent of analogies where the correct answer
is in the top spot. (top-1 accuracy)

Bits Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg
16 0.96 0.96 0.96 0.97 0.96 0.96
32 0.98 0.99 0.98 0.98 0.96 0.98
64 0.99 0.99 0.99 0.99 0.99 0.99

Table 3: Percent of analogies where the correct answer
is in the top five. (top-5 accuracy)

scales with embedding size, since larger embed-
dings have more bits to encode information.

As a further indicator of performance, we record
our embeddings’ top-5 accuracy in Table 3. As
demonstrated by the high accuracy numbers ≥
0.96, no matter what embedding size is used, more
closely-related words always make it into the top
nearest neighbors for any given word. This clearly
demonstrates the validity of the evolved embed-
dings as well as the feasibility of our proposed
evolutionary pretraining approach.

6.3 Qualitative Analysis

To demonstrate the learned relationships in the bi-
nary embeddings, we evolved a 32-bit embedding
population using the same parameters on the entire
analogy set and extracted a few qualitative exam-
ples using the final embeddings. In Table 4, we
present some sample words, as well as the three
nearest words to each one. As shown, the closest-
related words always appear in the top three closest
neighbors, but we note that due to the specialized
nature of the word analogy dataset, words in the vo-
cabulary mainly learn either semantic relationships
or syntactic relationships. Nevertheless, this high-
lights our model’s ability to effectively learn and
model both semantic and syntactic relationships
between vocabulary words.

Overall, the results shown here highlight our
model’s ability to not only learn the semantic and

quick predict japan california
quicker predicts tokyo anaheim
quickest predicted yen bakersfield
quickly predicting japanese fontana

Table 4: Examples of the closest neighbors to a given
word using a 32-bit embedding.

syntactic relationships between words, but also to
maintain the arithmetic properties between the vec-
tors themselves. Due to the nature of the dataset
used, the semantic relationships outlined in the
analogy task tend to pertain more to geopolitical re-
lationships than other relationships, like synonyms,
antonyms, etc. Nevertheless, this still shows our
embeddings’ effectiveness at learning a targeted
vocabulary and relationships based on analogistic
reasoning. In future work, we plan on including a
way to artificially curate a more general analogy set
to train on, so the embeddings learn more general
relationships for a larger vocabulary.

6.4 Training Time

We trained our binary embeddings on an AMD
Ryzen Threadripper 3960X running at 2200 MHz,
using a single thread for each fold being trained.
The base training time for running 200,000 genera-
tions is shown in Table 5. We ran our 16-, 32-, and
64-bit embeddings until they reached convergence,
and report our results in Section 6.1.

Dimension Time Taken (HH:MM:SS)
16-bit 49:12:53
32-bit 67:14:10
64-bit 102:42:35

Table 5: Amount of time taken to run 200,000 iterations
on a single thread. (Times are in hh:mm:ss format)

7 Conclusion

As low-energy computing paradigms like Spiking
Neural Networks (SNNs) become increasingly pop-
ular for NLP applications, learning accurate binary
word embeddings also becomes very important as
SNNs can only process binary/spike inputs. At the
same time, as backpropagation is tricky in SNNs
and simple quantization-based binarization tech-
niques fail to achieve reasonable accuracy, an alter-
native approach that can learn high-quality binary
embeddings has become a pressing need. In this pa-
per, we introduced a new evolutionary approach to



learn binary embeddings from scratch, preserving
both the semantic/syntactic relationships between
words and the arithmetic properties of the embed-
dings themselves; while bypassing the difficulties
associated with implementing backpropagation in
SNNs. Experimental results show that the proposed
learning technique is both feasible and promising.

8 Limitations

The largest limitation to this work is the dataset
used to evolve the population of chromosomes. The
word analogy dataset (Mikolov et al., 2013b) has an
extremely small vocabulary size, and only includes
2 to 4 words related to each vocabulary word. To
address this, we intend to produce a method for cre-
ating a large number of “synthetic” word analogies,
so that we can provide the intended vocabulary and
have the system learn meaningful relationships for
all provided words. On the other hand, the bonus
to using this type of “restricted” analogy set is that
we can use targeted vocabularies for specialized
applications at the edge, allowing for even further
savings in energy consumption.

Furthermore, our implementation trains these
embeddings on a single thread, so our training
times are very large. There is vast room for im-
provement with regard to the training time, so we
intend on addressing this in future work as well.

Additionally, our genetic algorithm likely still
has room left for optimization. As future work, we
plan on optimizing the evolution strategy to further
cut down the number of generations needed for
a given embedding to converge to its top perfor-
mance.

We also plan to compare this embedding with
some other embeddings, both binary and real-
valued, to establish our performance with respect
to the state-of-the-art. As part of this comparison,
we plan to utilize this embedding in some down-
stream NLP tasks, both in the real-valued domain
and in some SNN architectures, to further evaluate
its performance.
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