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A B S T R A C T

While original IR evaluation metrics are normalized in terms of their upper bounds based on
an ideal ranked list, a corresponding expected value normalization for them has not yet been
studied. We present a framework with both upper and expected value normalization, where the
expected value is estimated from a randomized ranking of the corresponding documents present
in the evaluation set. We next conducted two case studies by instantiating the new framework
for two popular IR evaluation metrics (e.g., 𝑛𝐷𝐶𝐺, 𝑀𝐴𝑃 ) and then comparing them against
the traditional metrics.

Experiments on two Learning-to-Rank (LETOR) benchmark data sets, MSLR-WEB30K (in-
cludes 30K queries and 3771K documents) and MQ2007 (includes 1700 queries and 60K
documents), with eight LETOR methods (pairwise & listwise), demonstrate the following
properties of the new expected value normalized metric: (1) Statistically significant differences
(between two methods) in terms of original metric no longer remain statistically significant
in terms of Upper Expected(UE) normalized version and vice-versa, especially for uninformative
query-sets. (2) When compared against the original metric, our proposed UE normalized metrics
demonstrate an average of 23% and 19% increase in terms of Discriminatory Power on MSLR-
WEB30K and MQ2007 data sets, respectively. We found similar improvements in terms of
consistency as well; for example, UE-normalized MAP decreases the swap rate by 28% while
comparing across different data sets and 26% across different query sets within the same data
set. These findings suggest that the IR community should consider UE normalization seriously
when computing nDCG and MAP and more in-depth study of UE normalization for general IR
evaluation is warranted.

. Introduction

Empirical evaluation is a key challenge for any information retrieval (IR) system. The success of an IR system largely depends on
he user’s satisfaction, thus an accurate evaluation metric is crucial for measuring the perceived utility of a retrieval system by real
sers. While original 𝑛𝐷𝐶𝐺 (Järvelin & Kekäläinen, 2002), 𝑀𝐴𝑃 (Caragea et al., 2009) etc. metrics are normalized in terms of their
uery-specific upper bounds based on an ideal ranked list, a corresponding query-specific expected value normalization for them
as not yet been studied. For instance, the normalization term in nDCG computation is the Ideal DCG at cut-off 𝑘, which converts
he metric into the range between 0 and 1. On the other hand, 𝑀𝐴𝑃 is normalized by the maximum possible Sum of Precision (SP)
cores at cut-off 𝑘. Thus, Ideal DCG and Sum of Precision (SP) scores essentially serve as the query-specific upper-bound normalization
actor for metric nDCG and MAP, respectively.
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Interestingly, the above two popular metrics do not include a similar query-specific expected value normalization factor (the
urrent widely used assumption for expected value is zero across all queries). However, each query is different in terms of its

difficulty (informative/uninformative/distractive), user’s intent (exploratory/navigational), distribution of relevance labels of its
associated documents (hard/easy) and user’s perceived utility at different cut-off 𝑘, essentially implying different expected values
for each of them. Therefore, an accurate estimation of an evaluation metric should not only involve an upper-bound normalization
(e.g., Ideal DCG, SP, etc.), but also a proper query-specific expected value normalization.

Consider the case of re-ranking where an initial filtering has already been performed given a query and as expected, a large
number of associated documents in the filtered set are highly relevant. In this case, even just a random ranking of those documents
will yield a high accuracy as most of the documents are highly relevant anyway. This means that even if a ranker does not learn
anything meaningful and merely ranks documents randomly, it can still achieve a very high score in terms of the original metric. In
other words, the expected value of the original metric, in this case, is very high because of the skewed relevance label distribution
f the associated documents and this factor should be accounted for while measuring the ranker’s quality. In summary, a proper
xpected value normalization is essential for IR evaluation metrics to accurately measure the quality of a ranker as well as for a
airer comparison across multiple ranking methods.

What does query-specific expected value normalization mean for an IR evaluation metric? How can we come up with a more
ealistic expected value for each query and include it with the original IR metric computation? One way to address this issue is to
ntroduce a penalty term inside the formula of different IR evaluation metrics which will penalize queries with high expected values
f the same metric. In other words, given a query, we propose to use the expected value of the particular evaluation metric as a
uery-specific expected value of the same metric for that query, which can yield customized expectations for different queries and
hus, ensure fairer treatment across all queries with different difficulty levels.

With the observation that both nDCG and MAP metrics only involve query-specific upper-bound normalization (e.g., normaliza-
ion with ideal DCG for nDCG computation, while MAP is normalized by the maximum possible Sum of Precision); none of them
nclude a query-specific expected value normalization. In this paper, we proposed a new general framework for IR evaluation with
oth upper and expected value normalization and instantiated the new framework for two popular IR evaluation metrics: nDCG and
AP by computing a more reasonable(non-zero) expected value. Specifically, we introduce two different variants of the framework,

.e., 𝑉1, 𝑉2, which are essentially two different ways to introduce a penalty in terms of normalization with a query-specific upper
nd expected value of the metric (see Section 5 for more details). We then show how we can compute a more realistic query-specific
xpected value for the two metrics by computing its expectation for each query in case of a randomized ranking of the corresponding
ocuments, and then, use this expected value as a penalty term while computing the new metric. The intuition here is that an intelligent
anking method should perform at least as good as a random-ranking algorithm, which naturally inspired us to use the expectation in case
f random ranking as our expected value. Finally, for each metric, we also theoretically prove the correctness of the expected value
Derivation details can be found in each case-study section).

Next, we investigated the implications of upper expected value normalization on the original IR metric. How it may impact
R evaluation in general and more importantly, which metric is better? Why should we care? To answer these questions, we have
onducted extensive experiments on two popular Learning-to-Rank (LETOR) data-sets with eight LETOR methods including RankNet
Burges et al., 2005), RankBoost (Freund, Iyer, Schapire, & Singer, 2003), AdaRank (Xu & Li, 2007), Random Forest (Leo, 2001),
ambdaMART (Burges, 2010), CoordinateAscent (Metzler & Croft, 2007), ListNet (Cao, Qin, Liu, Tsai, & Li, 2007) and L2 regularized
ogistic Regression (Fan, Chang, Hsieh, Wang, & Lin, 2008; Lin, Weng, & Keerthi, 2008). Experimental results demonstrate that a
ignificant portion of the queries in popular benchmark data-sets produced a high expected value normalization factor, verifying
hat expected value normalization can indeed alter the relative ranking of multiple competing methods (confirmed by Kendall’s 𝜏
ests Sakai, 2006, 2016) and thus, should not be ignored. At the same time, for a number of closely performing LETOR method-pairs,
tatistically significant differences in terms of original metric no longer remain statistically significant in terms of expected value
ormalized metric and vice-versa, especially for uninformative query-sets (see Section 4 for a concrete definition), suggesting expected
alue normalization yields different conclusions than the original metric.

Next, we compare the original metric against the UE normalized version from two perspectives: Distinguishability and Consistency.
n case of discriminative power, we followed Sakai (2006), Sakai et al. (2011) to use student’s t-test as well as computed ‘‘Percentage
bsolute Differences’’ to quantify distinguishability and found that UE normalized version can better distinguish between two closely
erforming LETOR methods in case of uninformative queries. For consistency, we performed swap rate tests and found that 𝑀𝑆𝑃𝑈𝐸

rovides better performance in terms of Consistency while 𝐷𝐶𝐺𝑈𝐸 does not compromise in terms of Consistency.
These findings suggest that the community should rethink about IR evaluation and consider expected value normalization

eriously. In summary, we make the following contributions to the paper:

. We propose an extension of traditional IR evaluation metrics which includes an expected value normalization term, and
systematically perform two case-studies by showing how expected value normalization can be materialized for nDCG and MAP.

. We propose two different variants of the proposed UE normalized version for two popular IR evaluation metrics.

. We show how we can compute a more realistic query-specific expected value for two IR evaluation metrics by computing its
expectation for each query in case of a randomized ranking of the document collection and also theoretically prove its correctness.

. We conducted extensive experiments to understand the implications of the expected value normalized metric and compared our
proposed metric against the original metric from two important perspectives: Distinguishability and Consistency.

. Our proposed framework is very general and can be easily extended to other IR evaluation metrics or evaluation metrics in other
2

domain.
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The rest of the paper is organized as follows: Section 2 reviews related works from the past literature. Section 3 provides essential
ackground about our two experimental metric computations for expected value normalization. Section 4 states our research
bjectives. In Section 5, we first present the framework with query-specific upper and expected value normalization. Section 6
resents the experiment details and results. Finally, Section 7 concludes our paper with discussions and possible future directions.

. Related work

raditional IR evaluation metric: Many metrics have been introduced for IR system evaluation in recent years. Two most frequent
nd basic metrics for the performance evaluation of IR system are precision and recall, especially for extraction tasks (Karmaker Santu,

Sondhi, & Zhai, 2016; Sarkar & Karmaker Santu, 2022). Novel extensions such as Rank-Biased Precision (Amigó, Mizzaro, & Spina,
2022; Moffat & Zobel, 2008) are proposed for solving long (deep) ranking results limitation. Other popular metrics such as 𝑀𝐴𝑃
(Mean Average Precision) and Normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺) are also widely used as offline evaluation standards.
Different metrics have different hyper-parameters for users to choose from based on their own preferences.

nDCG: nDCG is the normalized version of Discounted Cumulative Gain (DCG), where the normalization term is essentially a query-
pecific upper-bound (i.e., normalization with Ideal DCG), which converts the metric into the range between 0 and 1 (Järvelin &
ekäläinen, 2002). The benefit of nDCG is it can be applied to multi-level relevance judgments and also sensitive to small changes

n a ranked list. Many researchers have investigated its properties (see, e.g., Ravikumar, Tewari, & Yang, 2011; Wang, Wang, Li,
e, & Liu, 2013; Yilmaz, Kanoulas, & Aslam, 2008). The fact that the general concept of 𝑛𝐷𝐶𝐺 can be implemented in a variety of
ays was recognized in the previous work (Kanoulas & Aslam, 2009), where the authors scrutinized how to choose from a variety of
iscounting functions and different ways of designing the gain function to optimize the efficiency or stability of 𝑛𝐷𝐶𝐺 (Karmaker
antu, Sondhi, & Zhai, 2017). Previous research has also shown that with different gain functions, 𝑛𝐷𝐶𝐺 may lead to different
esults and the discounting coefficients do make a difference in evaluation results as compared to using uniform weights (Voorhees,
001). Regarding 𝑛𝐷𝐶𝐺 cutoff-depths, Sakai and others (Sakai, 2007) have researched the reliability of 𝑛𝐷𝐶𝐺 by establishing that
t is highly correlated with average precision if the cutoff-depth 𝑘 is big enough. According to a recent research (Santu, Sondhi,

Zhai, 2020), conventional 𝑛𝐷𝐶𝐺 score results in a significant variance in response to the 𝑘 value and urged for query-specific
ustomization of 𝑛𝐷𝐶𝐺 to acquire more trustworthy conclusions. Additionally, Gienapp, Stein, Hagen, and Potthast (2020) proposed
measure to explicitly reflect a system’s divergence by comparing the query-level 𝑛𝐷𝐶𝐺 with a randomized ranked 𝑛𝐷𝐶𝐺, which

hey called 𝑅𝑁𝐷𝐶𝐺.

AP: Average precision (AP) is another popular indicator for evaluating ranked output in IR experiments for a number of reasons
s it is already known to be stable (Buckley & Voorhees, 2017) and highly informative measure (Aslam, Yilmaz, & Pavlu, 2005).
hereas Mean Average Precision (MAP) (Caragea et al., 2009) is the average AP of each class which can reflect the overall

erformance among multiple topics. However, the assumption behind MAP is retrieved documents can be considered as either
elevant or non-relevant to user’s information need, which is not accurate. Previous researchers have studied the properties of MAP
n terms of different relevance judgments. Yilmaz and Aslam (2006), for instance, proposed different variants of AP for addressing
ncomplete and imperfect relevance judgments, where they consider the document collection is dynamic, as in the case of web
etrieval, and they use an expectation of random sample from the depth-100 pool. Furthermore, Robertson, Kanoulas, and Yilmaz
2010) proposed an extended Average Precision named Graded Average Precision (GAP) which can tackle the cases of multi-graded
elevance.

uery Specific Customization for General IR Evaluation: Previous work has explored how to incorporate query-specific
ustomization for IR evaluation metrics in general. Recently, Chen, Zhang, and Sakai (2022) proposed a framework for query-
evel evaluation metrics by incorporating the anchoring effect into the user model and achieved better correlation with user
atisfaction. Chen et al. (2021) proposed query reformulation aware metric as query reformulating behaviors may reflect user’s
earch intents. Kuzi, Labhishetty, Karmaker Santu, Joshi, and Zhai (2019) presented a Best-Feature Calibration (BFC) strategy for
nalyzing learning to rank models and used this strategy to examine the benefit of query-level adaptive training, which demonstrated
he importance of query-specific parameters in IR evaluation once again. Moffat, Thomas, and Scholer (2013) followed by Bailey,
offat, Scholer, and Thomas (2015) argued that user behavior varies on a per-topic basis depending on the nature of the underlying

nformation need, and hence that it is natural to expect that evaluation parameterization should also be variable. Billerbeck et al.
tudied the optimal number of top-ranked documents that should be used for extraction of terms for expanding a query (Billerbeck
Zobel, 2004). Such work has shown the need to employ a ranking function for each individual query. Egghe (2008) demonstrated

recision, recall, fallout and miss as a function of the number of retrieved documents and their mutual interrelations.

R Evaluation with Variable Parameterization: Query specific customization can be viewed as a special case of variable
arameterization for IR evaluation metrics, which has been explored previously. Roitero, Maddalena, Mizzaro, and Scholer (2021)
tudied the effect of the choice of relevance scales on the evaluation of IR system. Webber, Moffat, and Zobel (2010) explored the role
hat the metric evaluation depth 𝑘 plays in affecting metric values and system-versus-system performances for two popular families
f IR evaluation metrics: i.e., recall-based and utility-based metrics. Study by Jiang and Allan (2016) showed that the adaptive effort
etrics can better indicate user’s search experience compared with conventional metrics. Yilmaz, Shokouhi, Craswell, and Robertson

2010) showed users are more likely to click on relevant results and also examined the differences between searcher’s effort (dwell
3
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time) and assessor’s effort (judging time) on results, and features predicting such effort (Yilmaz, Verma, Craswell, Radlinski, &
Bailey, 2014). Sakai and Robertson (2008) modeled a user population to assess the appropriateness of different evaluation metrics.

Distinction from prior work: Our work completely differs from the previous effort as our goal is to investigate the impact of
xpected value normalization on the prominent evaluation metrics. To the best of our knowledge, there has never been a systematic
tudy of query-specific expected value normalization for IR evaluation metrics. Furthermore, our work is groundbreaking in that it
roposes a generic upper expected value normalization framework and effectively applies it to two prominent evaluation metrics.
e additionally compute an expectation over a randomized ranked list to estimate a more realistic expected value and also give

he derivation. Our research clearly articulates the effects of such expected value normalization on two popular evaluation metrics
nd lays the foundation for future research in this direction.

. Revisiting original metrics

In this section, we provide some essential background about 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 computation and also provide our motivation of
expected value normalization for the two metrics.

3.1. Computation of standard nDCG

The principle behind Normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺) is that documents appearing lower in a search result
list should contribute less than similarly relevant documents that appear higher in the results (Järvelin & Kekäläinen, 2002). This
is accomplished by introducing a penalty term that penalizes the gain value logarithmically proportional to the position of the
result (Wang et al., 2013). Mathematically:

𝐷𝐶𝐺@𝑘 =
𝑘
∑

𝑖=1

2𝑅𝑖 − 1
log𝑏(𝑖 + 1)

(1)

Here, 𝑖 denotes the position of a document in the search ranked list and 𝑅𝑖 is the relevance label of the 𝑖th document in the
list, cutoff 𝑘 means 𝐷𝐶𝐺 accumulated at a particular rank position 𝑘, the discounting coefficient is to use a log based discounting
factor 𝑏 to unevenly penalize each position of the search result. 𝑛𝐷𝐶𝐺@𝑘 is 𝐷𝐶𝐺@𝑘 divided by maximum achievable 𝐷𝐶𝐺@𝑘,
also called Ideal 𝐷𝐶𝐺(IDCG@k), which is computed from the ideal ranking of the documents with respect to the query.

𝑛𝐷𝐶𝐺@𝑘 = 𝐷𝐶𝐺@𝑘
𝐼𝐷𝐶𝐺@𝑘

(2)

3.2. Computation of standard MAP

For our second case study, we selected another popular evaluation metric called Mean Average Precision (𝑀𝐴𝑃 ). In the field
of information retrieval, precision is the fraction of retrieved documents that are relevant to the query. The formula is given by:
𝑃𝑟𝑒𝑐 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ), where, 𝑇𝑃 and 𝐹𝑃 stands for True Positive and False Positive, respectively. Precision at cutoff 𝑘 is the precision
calculated by only considering the subset of retrieved documents from rank 1 through 𝑘. However, the original precision metric is
not sensitive to the relative order of the ranked documents, hence, we do not consider it for our exploration.

A related popular metric, which is sensitive to the relative order of the ranked documents, is Average Precision, which computes
the sum of precision scores at each rank where the corresponding retrieved document is relevant to the query.

𝐴𝑃@𝑘 = 1
𝑘

𝑘
∑

𝑖=1
𝑃𝑟𝑒𝑐(𝑖) ⋅ 𝑅𝑖 (3)

Here, 𝑅𝑖 is an indicator variable that says whether 𝑖th item is relevant (𝑅𝑖 = 1) or non-relevant (𝑅𝑖 = 0). From Formula (3), we
an see 𝐴𝑃@𝑘 is already normalized by the maximum possible Sum of Precision (SP), which is 𝑘 in this case by assuming a precision
alue of 1.0 for every position from 1 to 𝑘. Thus, 𝐴𝑃@𝑘 is already upper-bound normalized version of 𝑆𝑃@𝑘, like 𝑛𝐷𝐶𝐺@𝑘 is for

𝐷𝐶𝐺@𝑘. Finally, Mean Average Precision (𝑀𝐴𝑃 ) of a set of queries is defined by the following formula, where, |𝑄| is the number
of queries in the set and 𝐴𝑃 (𝑞) is the average precision (𝐴𝑃 ) for a given query 𝑞.

𝑀𝐴𝑃 =

∑

|𝑄|

𝑞=1 𝐴𝑃 (𝑞)

|𝑄|

In summary, 𝐴𝑃 is essentially an upper-bound normalized version of Sum of Precision (𝑆𝑃 ), as defined below:

Sum of Precision (SP): SP computes the summation of the precision scores at all ranks (from 1 to rank 𝑘), where the retrieved document
is relevant to the query without any upper or expected value bound normalization.

𝑆𝑃@𝑘 =
𝑘
∑

𝑃𝑟𝑒𝑐(𝑖) ⋅ 𝑅𝑖 (4)
4

𝑖=1
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4. Research objectives

A closer look into the formula of conventional nDCG and MAP shows that the two metrics incorporate only a query-specific
pper-bound normalization (i.e., IDCG is actually an upper-bound normalization term). However, as mentioned in Section 1,
ach query is different in terms of difficulty (hard/easy), informativeness (informative/uninformative/ distractive), user’s intent
exploratory/navigational); as such, they have different expected values of different evaluation metrics. Thus, an accurate estimation
f average 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 should include different expected values for different queries.

Our research objectives stem from this critical observation discussed above. More specifically, how can we develop a more
ealistic expected value for each query and include it in the original metric computation? What is the effect of query-specific expected
alue normalization on the IR evaluation metric? These are the research questions we systematically study in this paper. In other
ords, The main objective of our work is to relax the incorrect assumption of uniform expected values (of 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 ) across all

queries while evaluating IR systems. We propose that an accurate evaluation metric should customize for each query and normalize
with respect to both query-specific upper and expected values. A follow-up question that arises immediately is the following: How
can we estimate a realistic expected value of an IR evaluation metric? While the original implementation of the above two metrics
assumes zero as the expected value, previous work proposed to use the worst possible ranking score as the expected value (Gienapp,
Fröbe, Hagen, & Potthast, 2020) to achieve a standardized range; we argue that this expected value can be further constrained by
using the score of a randomly ranked list for each query. The justification behind this choice is that a reasonable ranking function should
be at least as good as the method that ranks documents merely randomly and should be penalized in cases where it performs worse than
random.

To better motivate UE normalization, we first define the following types of queries, which we will use throughout the rest of
the paper:

1. Informative Queries: These are queries where a reasonable ranking method performs significantly better than a pure random
ranking system. Essentially, these are queries which contain the ‘‘right’’ keywords to find out the most relevant documents
according to the user’s information need. Therefore, the actual evaluation metric scores are much higher than the expected
value (the lower triangle region of the plot 1).
Ideal Queries: These are special cases of Informative queries where the difference between actual evaluation metric score and
random ranked metric score (expected value) is the largest.

2. Uninformative Queries: These are queries where a reasonable ranking method performs close to a pure random ranking system.
In other words, these are queries which does not offer much value in finding out the most relevant documents. Therefore, the
actual evaluation metric scores are similar to the expected value (region around the diagonal line). There are two special cases
for Uninformative queries as defined below:

(a) Hard Queries: Hard queries are special cases of Uninformative queries, where both reasonable ranking methods, as well as
pure random ranking systems, demonstrate poor performance. This usually happens in cases where there are no/very few
relevant documents in the entire corpus.

(b) Easy Queries: Easy queries are special cases of Uninformative queries, where both reasonable ranking methods, as well as
pure random ranking systems, demonstrate very high performance. This usually happens in cases where there are a lot of
relevant documents in the corpus (for example, in case of re-ranking in multi-stage ranking systems Asadi & Lin, 2013;
Clarke, Culpepper, & Moffat, 2016; Tonellotto, Macdonald, & Ounis, 2013) and there is little room for improving beyond
random ranking.

Fig. 1 shows an illustration of different types of queries with different combinations of evaluation metric expected value and
actual metric score. As apparent from Fig. 1, the proposed UE normalization is expected to have a large penalty on uninformative
queries including special cases like hard queries (lack of relevant document scenarios) and easy queries (re-ranking scenarios). On
the other hand, expected value normalization will have minimal impact in case of Ideal queries as the expected value tends to zero
and the actual metric score is very high. However, as demonstrated by our experiments, real-world queries are not Ideal always and
hence, a proper expected value normalization is necessary while computing 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 scores because (1) It better captures
he difficulty as well as variations across different queries. (2) It makes comparisons and averaging across different queries fairer.

. IR evaluation with joint upper & expected value normalization

Assume that 𝐴@𝑘 is the standard evaluation metric and 𝑘 is the cutoff rank. Before introducing the generic IR evaluation
ramework with both upper & expected value (UE) normalization, we first define the following terms.

• 𝐈𝐔𝐁[𝐀@𝐤]: Given a particular query and an associated collection of documents (each with a distinct relevance labels),
𝐼𝑈𝐵[𝐴@𝑘] (Ideal Upper Bound for 𝐴@𝑘) is the value that 𝐴@𝑘 assumes in case of perfect ranking of the document collection.

• 𝐑𝐄𝐁[𝐀@𝐤]: Given a particular query and an associated collection of documents (each with a distinct relevance label),
𝑅𝐸𝐵[𝐴@𝑘] (Randomized Expected Bound for 𝐴@𝑘) is the value that 𝐴@𝑘 assumes in case of random ranking (𝐸[𝐴@𝑘])
of the document collection.

• Upper-Bound Normalization: Given a particular query and an evaluation metric 𝐴@𝑘, Upper-bound normalization of the
metric is defined as [𝐴@𝑘]𝑈 = 𝐴@𝑘 .
5

𝐼𝑈𝐵[𝐴@𝑘]
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Fig. 1. Query types with different expected values of evaluation metric.

Now, we introduce two different variations of Joint Upper & Expected Value Normalization, which is denoted by, [𝐴@𝑘]𝑈𝐸 . We
call the two versions as 𝑉1, 𝑉2.

[𝐴@𝑘]𝑈𝐸
𝑉1

=
(

𝐴@𝑘
𝐼𝑈𝐵[𝐴@𝑘]

)(

𝐴@𝑘
(𝐴@𝑘 + 𝑅𝐸𝐵[𝐴@𝑘])

)

(5)

[𝐴@𝑘]𝑈𝐸
𝑉2

=

⎧

⎪

⎨

⎪

⎩

𝐴@𝑘−𝑅𝐸𝐵[𝐴@𝑘]
𝐼𝑈𝐵[𝐴@𝑘]−𝑅𝐸𝐵[𝐴@𝑘] , if 𝐴 ≥ 𝑅𝐸𝐵

𝐴@𝑘−𝑅𝐸𝐵[𝐴@𝑘]
𝑅𝐸𝐵[𝐴@𝑘] , otherwise

(6)

In the first Eq. (5), we introduce a linear penalty term for Upper Expected Value Normalization while in the second Eq. (6)
we introduce a non-linear penalty term. The intuition of the above two Equations is that we want to penalize methods for queries
where it performs close to a random ranking method, i.e., the difference between 𝐴@𝑘 and 𝑅𝐸𝐵[𝐴@𝑘] is minimal (the uninformative
queries): |𝐴@𝑘 − 𝑅𝐸𝐵[𝐴@𝑘]| ≡ 0. Even if a ranker achieves high 𝐴@𝑘 in this case, it does not necessarily mean it is an ‘‘intelligent’’
ranker as the ‘‘vanilla’’ random ranking method can achieve similar performance as well. So, the reward for the method in this case
should be discounted. Therefore, to truly distinguish between an ‘‘intelligent’’ and ‘‘vanilla’’ ranking method, it is important to
penalize the traditional metric with a more realistic expected value, e.g., score w.r.t. a randomly ranked collection. In other words,
for a ranking algorithm to claim a high 𝐴@𝑘 score, it must perform significantly better than the random ranking baseline.

5.1. Range of expected value normalized metric

It should be noted that 𝑉1 and 𝑉2 are just two different ways to introduce the penalty for higher 𝑅𝐸𝐵 and obviously, more
variants are possible while the basic idea remains the same. As can be seen from Eq. (5), 𝑉1 includes an additional multiplicative
term that penalizes the original metric with the 𝑅𝐸𝐵 term in the denominator and the range of the metric is still bounded between
0 and 1. 𝑉2 (Eq. (6)) works as follows: instead of range [0, 1], it extends the range from negative to positive real numbers yielding
negative numbers for a ranking method which performs worse than the random ranking baseline. In summary, for Eq. (5), the
range is still [0, 1]; while for Eq. (6), the range of the metric is extended from −1 to +1 where, +1 means perfect ranking, 0 means
randomized ranking and −1 means all irrelevant results.

6. Case studies

6.1. Data set

We used two LETOR benchmark data-sets, i.e., ‘‘MSLR-WEB30K’’ (Qin, Liu, Ding, Xu, & Li, 2010) and ‘‘MQ2007’’ (Qin & Liu,
2013) for our experiments. The first and second data-set includes 30,000 and 1700 queries respectively and have widely been used
as benchmarks for LETOR tasks (Ganjisaffar, Caruana, & Lopes, 2011; Jia, Wang, Guo, & Wang, 2021; Keshvari, Ensan, & Yazdi,
2022; Shukla, Lease, & Tewari, 2012).

In these data-sets, each row corresponds to a query-document pair. The first column represents the relevance label of the pair, the
second column is the query id, and the rest of columns represent features. The relevance scores are represented by an integer scale
between 0 to 4 for ‘‘MSLR-WEB30K’’ and between 0 to 2 for ‘‘MQ2007’’, where 0 means non-relevant and 4(2) means highly relevant.
The larger the value of relevance label, the more relevant the query-document pair is. Features related to each query-document pair
6
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Table 1
Data sets statistics.

Data set # Documents # Queries # Features

MSLR-WEB30K ∼3771 K 31531 136
MQ2007 65323 1692 46

Table 2
Popular learning to rank algorithms.

Algorithm Short form Algorithm Short form

RankNet (Burges et al., 2005) RNet LambdaMART (Burges, 2010) LMART
RankBoost (Freund et al., 2003) RBoost CoordinateAscent (Metzler & Croft, 2007) CA
AdaRank (Xu & Li, 2007) ARank ListNet (Cao et al., 2007) LNet
Random Forest (Leo, 2001) RF Logistic Regression (Fan et al., 2008) L2LR

are represented by a 136 dimensional feature vector for ‘‘MSLR-WEB30K’’ and 46 dimensional feature vector for ‘‘MQ2007’’ data-set
(Santu et al., 2020). For more details on how the features were constructed, see Qin and Liu (2013) and Qin, Liu, Ding, et al. (2010).
Table 1 shows the number of queries, documents, and features for each data-set (Keshvari et al., 2022). The documents in MQ2007
are retrieved from 25 million pages in the Gov2 web page collection (Qin, Liu, Xu, & Li, 2010) for queries in the million Query
track of TREC 2008 while MSLR-web30K is created from a retired labeling set of the Bing search engine.

Both two data-sets come with five folds, where each fold has a test, train, and validation set. We used the train set of each fold
or training the models and report the average results across test sets of all folds.

We randomly sampled 10,000 queries from the ‘‘MSLR-WEB30K’’ and 1000 queries from ‘‘MQ2007’’ individually. For ‘‘MSLR-
EB30K’’, the average number of documents associated with each query was 119.06; while for ‘‘MQ2007’’, the number was 41.47.
e kept all the features available (136 for ‘‘MSLR-WEB30K’’ and 46 for ‘‘MQ2007’’) for all experiments conducted in this paper.

.2. Learning to Rank (LETOR) methods

Table 2 contains eight prominent LETOR approaches along with popular classification and regression methods used for ranking
pplications (Keshvari et al., 2022). We also assign acronyms to each approach for notational convenience, which we will use
hroughout the rest of the paper.

.3. Case study 1: nDCG with joint upper expected value normalization

In each case study section, we first describe how to compute a more realistic expected value for the corresponding metric, (𝑛𝐷𝐶𝐺
for the first case study) i.e., the expected 𝑛𝐷𝐶𝐺 in case of random ranking. Although (Gienapp, Stein, et al., 2020) proposed to use
the expectation to estimate this value, no derivation process was provided. Note that, 𝑛𝐷𝐶𝐺 is already an upper-bound normalized
version of 𝐷𝐶𝐺. Therefore, we start with the original metric 𝐷𝐶𝐺@𝑘, where, 𝑅𝐸𝐵[𝐷𝐶𝐺@𝑘] is the expected 𝐷𝐶𝐺@𝑘 computed
based on a randomly ranked list. Thus, we use the terms 𝐸[𝐷𝐶𝐺@𝑘] and 𝑅𝐸𝐵[𝐷𝐶𝐺@𝑘] interchangeably throughout the paper.
Additionally, the expected value normalized nDCG and upper expected value normalized DCG also mean the same thing and we
will use them interchangeably throughout the paper as well.

6.3.1. Expected DCG@k
Let 𝑅 be a random variable denoting the relevance label of a query-document pair and 𝑅 can assume values from a discrete

finite set 𝜙 = {0, 1, 2, 3..., r}. Also, let the current query be 𝑞 and the total number of documents that need to be ranked for the
current query 𝑞 is 𝑛, let us denote this set by 𝐷𝑞 . To derive the formula of 𝐸[𝐷𝐶𝐺@𝑘], we start with the definition of expectation
in probability theory.

𝐸[DCG@k] = 𝐸

[ 𝑘
∑

𝑖=1

2𝑅𝑖 − 1
log𝑏(𝑖 + 1)

]

=
𝑘
∑

𝑖=1

𝐸
[

2𝑅𝑖 − 1
]

log𝑏(𝑖 + 1)

So, the computation of 𝐸[𝐷𝐶𝐺@𝑘] is based on the computation of 𝐸[2𝑅𝑖 − 1], which is the expected relevance label of the
retrieved document at position 𝑖. Below we show how to estimate 𝐸[2𝑅𝑖 − 1] and first begin with the definition of expectation.

𝐸[2𝑅𝑖 − 1] =
𝑟
∑

𝑗=0
(2𝑗 − 1) ⋅ 𝑃𝑟(𝑅𝑖 = 𝑗)

Here, 𝑃𝑟(𝑅𝑖 = 𝑗) is the probability that the retrieved document at position 𝑖 in a randomized ranking would assume a relevance
label of 𝑗 with respect to the current query. Let us assume that 𝑛𝑗 is the number of documents with relevance label 𝑗, where 𝑗 ∈ 𝜙,
with respect to the current query. Thus, the constraint ∑𝑟

𝑗=1 𝑛𝑗 = 𝑛 holds, where 𝑛 is the total number of documents in 𝐷𝑞 . Thus,
𝑃𝑟(𝑅 = 𝑗) can essentially be computed by counting all the possible rankings which contain a document with relevance label 𝑗 (with
7
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Table 3
𝑛𝐷𝐶𝐺 scores of different LETOR methods for variable 𝑘 on MSLR-WEB30K data-set.
Method nDCG@

5 10 15 20 30

ARank 0.321 0.349 0.370 0.389 0.423
LNet 0.153 0.182 0.206 0.228 0.268
RBoost 0.306 0.334 0.357 0.377 0.414
RF 0.383 0.411 0.432 0.449 0.479
RNet 0.154 0.183 0.207 0.229 0.269
CA 0.398 0.413 0.428 0.442 0.470
L2LR 0.197 0.237 0.269 0.297 0.344
LMART 0.436 0.454 0.470 0.485 0.513

Table 4
𝑛𝐷𝐶𝐺 scores of different LETOR methods for variable 𝑘 on MQ2007 data-set.
Method nDCG@

5 10 15 20 30

ARank 0.388 0.415 0.448 0.479 0.537
LNet 0.376 0.403 0.438 0.468 0.528
RBoost 0.383 0.414 0.449 0.480 0.535
RF 0.403 0.428 0.460 0.491 0.547
RNet 0.380 0.413 0.445 0.476 0.536
CA 0.392 0.420 0.454 0.482 0.539
L2LR 0.387 0.415 0.447 0.477 0.538
LMART 0.393 0.420 0.453 0.485 0.544

Table 5
Upper & Expected Value Normalized DCG (𝑉1, 𝑉2) scores of different LETOR methods for variable 𝑘: Each cell shows a particular 𝐷𝐶𝐺𝑈𝐸

𝑉 score with a particular
𝑘 on MSLR-WEB30K data-set.

Method 𝐷𝐶𝐺𝑈𝐸
𝑉1

@ 𝐷𝐶𝐺𝑈𝐸
𝑉2

@

5 10 15 20 30 5 10 15 20 30

ARank 0.249 0.261 0.271 0.281 0.299 0.237 0.253 0.264 0.276 0.296
LNet 0.097 0.112 0.125 0.138 0.161 0.046 0.060 0.072 0.083 0.104
RBoost 0.232 0.247 0.260 0.270 0.290 0.221 0.237 0.250 0.262 0.285
RF 0.304 0.318 0.328 0.336 0.350 0.308 0.326 0.338 0.347 0.365
RNet 0.098 0.113 0.126 0.138 0.162 0.047 0.061 0.072 0.084 0.105
CA 0.318 0.320 0.325 0.330 0.342 0.325 0.328 0.334 0.340 0.354
L2LR 0.137 0.160 0.180 0.198 0.227 0.098 0.124 0.147 0.167 0.199
LMART 0.354 0.358 0.364 0.370 0.381 0.367 0.374 0.382 0.390 0.405

respect to the current query) at position i and dividing it by the total number of possible rankings up to position 𝑘. Below we show
the exact formula which is based on the permutation theory.

𝑬[𝟐𝑹𝒊 − 𝟏] =
𝑟
∑

𝑗=0
(2𝑗 − 1) ⋅

[ 𝑛𝑗𝑃1 ⋅
𝑛−1 𝑃𝑘−1
𝑛𝑃𝑘

]

=
𝑟
∑

𝑗=0
(2𝑗 − 1) ⋅

⎡

⎢

⎢

⎢

⎣

𝑛𝑗 !
(𝑛𝑗−1)!

⋅ (𝑛−1)!
(𝑛−𝑘)!

𝑛!
(𝑛−𝑘)!

⎤

⎥

⎥

⎥

⎦

=
𝑟
∑

𝑗=0
(2𝑗 − 1) ⋅

( 𝑛𝑗
𝑛

)

=
𝑟
∑

𝑗=0
(2𝑗 − 1) ⋅ 𝑃𝑟(𝑅 = 𝑗) = 𝑬[𝟐𝑹 − 𝟏]

Note that, 𝐸[2𝑅 − 1] is different from 𝐸[2𝑅𝑖 − 1] because the former is independent of the position of a document in the ranked
list, while latter is dependent. However, the above derivation reveals that 𝐸[2𝑅𝑖 − 1] is indeed independent of the position 𝑖 and
equals to 𝐸[2𝑅 − 1] for any 𝑖. Thus, the final formula for computing 𝐸[𝐷𝐶𝐺@𝑘] boils down to the following formula:

𝐸[𝐷𝐶𝐺@𝑘] = 𝐸[2𝑅 − 1] ⋅
𝑘
∑

𝑖=1

1
𝑙𝑜𝑔2(𝑖 + 1)

(7)

6.3.2. nDCG case-study observations
This section discusses some observed differences between the original 𝑛𝐷𝐶𝐺 and proposed 𝐷𝐶𝐺𝑈𝐸 . For deeper analysis, we also

created two special sub-sets of queries, i.e., (1) Uninformative query-set and (2) Ideal query-set, based on how close their average (of
eight LETOR methods and five cut-off k) expected nDCG is to the average real nDCG. To achieve this, we computed both average
8

expected nDCG and average real nDCG for eight LETOR methods and five different cut-offs. Specifically, we followed the steps
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Table 6
Upper & Expected Value Normalized DCG (𝑉1, 𝑉2,) scores of different LETOR methods for variable 𝑘: Each cell shows a particular 𝐷𝐶𝐺𝑈𝐸

𝑉 score with a particular
𝑘 on MQ2007 data-set.

Method 𝐷𝐶𝐺𝑈𝐸
𝑉1

@ 𝐷𝐶𝐺𝑈𝐸
𝑉2

@

5 10 15 20 30 5 10 15 20 30

ARank 0.288 0.299 0.315 0.331 0.355 0.134 0.209 0.258 0.299 0.363
LNet 0.277 0.288 0.306 0.321 0.348 0.114 0.187 0.248 0.284 0.345
RBoost 0.282 0.297 0.316 0.331 0.354 0.135 0.206 0.263 0.304 0.363
RF 0.299 0.309 0.326 0.340 0.364 0.168 0.235 0.285 0.322 0.386
RNet 0.279 0.295 0.313 0.327 0.353 0.117 0.204 0.255 0.290 0.357
CA 0.291 0.303 0.320 0.333 0.358 0.151 0.221 0.276 0.302 0.366
L2LR 0.285 0.299 0.315 0.329 0.356 0.133 0.209 0.259 0.300 0.368
LMART 0.290 0.301 0.319 0.335 0.361 0.163 0.231 0.280 0.318 0.380

Fig. 2. Histogram of expected 𝑛𝐷𝐶𝐺 scores of 10,000 queries from the ‘‘MSLR-WEB30K’’ data-set.

from Santu et al. (2020) to compute baseline nDCG scores. Tables 3 and 4 summarize the average (original) 𝑛𝐷𝐶𝐺 scores of different
LETOR methods for different values of 𝑘, i.e., 𝑘 = [5, 10, 15, 20, 30] for ‘‘MSLR-WEB30K’’ and ‘‘MQ2007’’ data-sets, respectively. One
general observation from Tables 3 and 4 is that average 𝑛𝐷𝐶𝐺@𝑘 obtained by each method increases as we increase 𝑘 and the
extent of this change is indeed significant. For example, RankNet achieves 𝑛𝐷𝐶𝐺 value of 0.154 and 0.269 for 𝑘 = 5 and 𝑘 = 30
respectively with an increase of 74.6% (Table 3, ‘‘MSLR-WEB30K’’ data-set).

Next, we computed the expected 𝑛𝐷𝐶𝐺 score for each query according to Eq. (7). Fig. 2 shows the histogram of expected 𝑛𝐷𝐶𝐺
scores of 10,000 queries from the ‘‘MSLR-WEB30K’’ data-set. It is interesting to note that, a large portion of ‘‘MSLR-WEB30K’’
queries indeed demonstrates a large variance with high values in the ranges [0.5–0.6]. This justifies our position that expected value
for each query can be very different and therefore, expected value normalization should not be ignored while evaluating ranking
performances. To further verify this, we calculated the average performances of different LETOR methods in terms of two variants
of joint upper-bound and expected-value normalized 𝐷𝐶𝐺, i.e. (𝐷𝐶𝐺𝑈𝐸

𝑉 ), for different values of 𝑘 on two data-sets (See Tables 5
and 6). Indeed, in ‘‘MSLR-WEB10K’’ data-set (Table 5), both 𝐷𝐶𝐺𝑈𝐸

𝑉 variants generate significantly smaller values compared with
the corresponding original 𝑛𝐷𝐶𝐺 values (in Table 3). Similarly, in our second data-set ‘‘MQ2007", two variants of 𝐷𝐶𝐺𝑈𝐸

𝑉 achieve
lower values (Table 6) compared with corresponding original 𝑛𝐷𝐶𝐺 values (Table 4).

Subsequently, we created two special sub-sets of queries based on the difference between their expected nDCG and the average
real nDCG obtained by eight LETOR methods, as defined below:

• Uninformative Query-set: These are the top 1000 queries among the 10,000 ‘‘MSLR-WEB30K’’ pool (500 in case of MQ-2007
data-set), where difference between the expected nDCG and the average real nDCG is minimal. In other words, these are the top
1000 (500) queries where the LETOR methods struggle to perform better than the random baseline.

• Ideal Query-set: These are the top 1000 queries among the 10,000 ‘‘MSLR-WEB30K’’ pool (500 in case of MQ-2007 data-set),
where difference between the Expected nDCG and the average real nDCG is maximal. In other words, these are the top 1000 (500)
queries where the LETOR methods outperforms the random baseline by the largest margin.

Expected value normalized nDCG yields different rankings compare to Original nDCG for Uninformative query-set: We
first test whether our proposed metrics generate different ranking results compared with the original nDCG or not. Table 7 shows

𝑈𝐸
9

the Kendall’s 𝜏 rank correlations between two rankings induced by 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺 scores in All, Uninformative or Ideal query
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Table 7
Kendall’s 𝜏 rank correlations between LETOR method ranks based on 𝑛𝐷𝐶𝐺 and two 𝐷𝐶𝐺𝑈𝐸 on All, uninformative
or ideal query sets from two data-sets.

Data-set Kendall’s 𝜏

Version All Uninform. Ideal

MSLR-WEB30K nDCG vs V1 1 0.928 1
nDCG vs V2 1 0.850 1

MQ2007 nDCG vs V1 1 1 1
nDCG vs V2 0.785 0.928 1

Table 8
We used Student’s t-test to verify whether statistically significant difference occurred between a pair of LETOR
methods while using 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 and counted the total number of disagreements on All, uninformative or
ideal query sets from two data-sets.

Data-set Conflict cases

Version All Uninform. Ideal

MSLR-WEB30K nDCG vs V1 0 18 0
nDCG vs V2 0 46 0

MQ2007 nDCG vs V1 0 20 1
nDCG vs V2 6 24 8

collections from the two data-sets. We can notice that for both data-sets, 𝐷𝐶𝐺𝑈𝐸
𝑉2

and 𝑛𝐷𝐶𝐺 generate different rankings for
Uninformative queries resulting the Kendall’s 𝜏 less than 1 (i.e. 0.85 and 0.928). While for 𝐷𝐶𝐺𝑈𝐸

𝑉1
, it generates different rankings

for Uninformative queries in ‘MSLR-WEB30K’’ but not in ‘‘MQ2007’’. Also, as expected in case of Ideal collections, there was no
difference between 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 in both data-sets (Kendall’s 𝜏 is 1). Another interesting observation is while we use all query
collections, only 𝐷𝐶𝐺𝑈𝐸

𝑉2
generate different ranking results in case of ‘‘MQ2007’’.

Statistical Significance Test Yields Different Outcomes for Original nDCG Vs Expected value normalized nDCG: Next we
onducted statistical significance tests for every pair of LETOR methods based on their original 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 scores to see
ow many times the two metrics disagree on the relative performance between two competing LETOR methods. Specifically, we
ollowed the bootstrap Studentised Test (student’s t-test) from Sakai (2006) to verify whether the observed difference has occurred
ue to mere random fluctuations or not for each pair of LETOR methods. Using the most widely used confidence value of 0.05 as
he threshold, a 𝑝-value larger than 0.05 means the two distributions are statistically same, otherwise the pair of distributions are
tatistically different. More specifically, we compared each pair of LETOR methods (8𝐶2 = 28 pairs in total) with respect to five
ut-off 𝑘, i.e., 𝑘 = [5, 10, 15, 20, 30]. Thus, the total number of comparisons is 28 × 5 = 140.

Table 8 summarizes the number of disagreements between 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 in two data-sets. For instance, based on student’s t-
test, 𝐷𝐶𝐺𝑈𝐸

𝑉2
disagreed with original 𝑛𝐷𝐶𝐺 on 46 (32%) pairs of LETOR methods for Uninformative query set from ‘‘MSLR-WEB30K’’,

while zero disagreements for Ideal query set. In ‘‘MQ2007’’, we can also observe 24(17%) pairs of disagreements for Uninformative
uery set as well as there are 8 pairs of conflicts in Ideal query set. In particular, we also see 𝐷𝐶𝐺𝑈𝐸

𝑉2
disagreed with original 𝑛𝐷𝐶𝐺

on 6 pairs for all query set from ‘‘MQ2007’’.
Given the difference in outcomes and disagreements between the original 𝑛𝐷𝐶𝐺 metric and its expected value normalized

version, a natural follow-up question now is: which metric is better? To answer this question, we compared the 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸

metrics in terms of their Discriminative power and Consistency (Sakai, 2006). These are two popular methods for comparing evaluation
measures.

Distinguishability: We first focus on the implication of expected value normalization in terms of its capability to distinguish
among multiple competing LETOR method pairs. To quantify distinguishability, we first utilize the discriminative power, which is a
popular method for comparing evaluation metrics by performing a statistical significance test between each pair of LETOR methods
and counting the number of times the test yields a significant difference (Chen et al., 2021; Sakai, 2006; Yu, Jatowt, Blanco, Joho,
& Jose, 2017). Note that discriminative power is not about whether the metrics are right or wrong: it is about how often differences
between methods can be detected with high confidence (Sakai et al., 2011). We again follow Sakai (2006) to use student’s t-test to
conduct this experiment and again use 0.05 as our threshold. Using the aforementioned Uninformative and Ideal query collections,

able 9 shows the total number of statistically significant differences that can be detected between pairs of LETOR methods in case
f All queries, Uninformative queries and Ideal queries (from both data-sets), individually by the 𝑛𝐷𝐶𝐺 and two 𝐷𝐶𝐺𝑈𝐸 metrics.

On ‘‘MSLR-WEB30K’’ Uninformative query set, 𝑛𝐷𝐶𝐺 could detect only 33 (23%) significantly different pairs. In contrast, both two
roposed 𝐷𝐶𝐺𝑈𝐸

𝑉1
and 𝐷𝐶𝐺𝑈𝐸

𝑉2
can detect more cases of significant differences. Additionally, 𝐷𝐶𝐺𝑈𝐸

𝑉2
achieve the best performance

which detected 78 (55%) significantly different pairs on the same set. On the other hand, on ‘‘MSLR-WEB30K’’ Ideal query-set, both
𝑛𝐷𝐶𝐺 and two 𝐷𝐶𝐺𝑈𝐸 detected 130 significantly different pairs. It is evident that, both two 𝐷𝐶𝐺𝑈𝐸 can better distinguish between
two LETOR methods than 𝑛𝐷𝐶𝐺 on ‘‘MSLR-WEB30K’’ data-set, while not compromising distinguishability in case of Ideal queries,
which is desired. We also observed similar improvements by 𝐷𝐶𝐺𝑈𝐸 in case of ‘‘MQ2007’’ data-set. More importantly, 𝐷𝐶𝐺𝑈𝐸 not
only improves the distinguishability in case of uninformative query set, it can also detect more different cases while using All query

𝑈𝐸 𝑈𝐸
10

set (for 𝐷𝐶𝐺𝑉2
) and Ideal query set (for both 𝐷𝐶𝐺 ), which is a bonus.
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Table 9
Student T-test induced total number of statistically significant differences detected based on 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸

on All, uninformative or ideal query sets from two data-sets.
Data-set Number of Stat-Sig difference

Version All Uniform. Ideal

MSLR-WEB30K
nDCG 133 33 130

V1 133 51 130
V2 133 78 130

MQ2007
nDCG 0 9 7

V1 0 29 8
V2 6 33 15

Table 10
Percentage Absolute Difference between pairs of LETOR methods in terms of average 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 scores on All,
uninformative or ideal query sets from two data-sets.

Metrics PAD score

All query Uninformative Ideal

MSLR MQ2007 MSLR MQ2007 MSLR MQ2007

nDCG 31.000 1.740 7.390 5.850 35.740 1.610

𝐷𝐶𝐺𝑈𝐸
𝑉1

35.700 3.600 9.980 7.825 40.210 1.980

𝐷𝐶𝐺𝑈𝐸
𝑉2

46.700 6.420 41.750 44.810 44.530 2.980

We also computed another metric to quantify distinguishability: Percentage Absolute Differences (PAD). More specifically, we
computed the percentage absolute differences between pairs of LETOR methods in terms of their original nDCG and 𝐷𝐶𝐺𝑈𝐸 scores,
separately. The intuition here is that metrics with higher distinguishability will result in higher percentage of absolute differences
between pairs of LETOR methods. To elaborate, we first calculated the average value of both 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 with varying 𝑘
(𝑘 = {5, 10, 15, 20, 30}) for each LETOR method and then, computed the percentage absolute difference between each pair of LETOR
methods in terms of those two metrics separately (one percentage for 𝑛𝐷𝐶𝐺 and another for 𝐷𝐶𝐺𝑈𝐸), then we calculated the
average of those percentage absolute differences. This experiment was performed on both data-sets. Mathematically, we used the
following formula for percentage absolute differences (PAD) in terms of original 𝑛𝐷𝐶𝐺:

𝑃𝐴𝐷(𝑛𝐷𝐶𝐺) =
|𝑛𝐷𝐶𝐺𝑎𝑣𝑔

𝑀1
− 𝑛𝐷𝐶𝐺𝑎𝑣𝑔

𝑀2
|

max
(

𝑛𝐷𝐶𝐺𝑎𝑣𝑔
𝑀1

, 𝑛𝐷𝐶𝐺𝑎𝑣𝑔
𝑀2

) × 100% (8)

Here, 𝑀1 and 𝑀2 are two different LETOR methods and 𝑛𝐷𝐶𝐺𝑎𝑣𝑔
𝑀1

is the average 𝑛𝐷𝐶𝐺 score obtained by method 𝑀1 with respect
to varying 𝑘. The equation for 𝑃𝐴𝐷(𝐷𝐶𝐺𝑈𝐸 ) is similar and thus omitted. Besides, we use this equation for the PAD calculation of
our second case-study. Table 10 shows these average percentage absolute differences of all possible LETOR method pairs in terms
of original 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 scores on our two data-sets.

From this table, we can observe that while using 𝐷𝐶𝐺𝑈𝐸 , the PAD score of 𝐷𝐶𝐺𝑈𝐸 is higher than the same for original 𝑛𝐷𝐶𝐺
for all types of query collections, i.e., using All queries, Uninformative and Ideal query sub-sets. For instance, the average PAD of
𝑛𝐷𝐶𝐺 on ‘‘MQ2007’’ is 1.74; while for 𝐷𝐶𝐺𝑈𝐸

𝑉2
, the score is 6.42 (using all query). Similarly, we discovered that for Uninformative

query-set, 𝐷𝐶𝐺𝑈𝐸 achieves a significant boost compared to the same in Ideal query-set in both data-sets.
These results show that the proposed UE normalization enhances the distinguishability of the original nDCG metric and can

differentiate between two competing LETOR methods with a larger margin, which is a nice property of UE normalization.
Consistency: This experiment focuses to compare the relative ranking of LETOR methods in terms of their 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸

scores, separately, across different data-sets (‘‘MQ2007’’ Vs ‘‘MSLR-WEB30K’’) as well as across Uninformative and Ideal query
collections within the same data-set. The goal here is to see which metric yields a more stable ranking of LETOR methods across
various types of documents and queries as well as across diverse sets of data-sets. We computed swap rate (Sakai, 2006) to quantify
the consistency of rankings induced by 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 metrics across different data-sets. The essence of swap rate is to
investigate the probability of the event that two experiments are contradictory given an overall performance difference.

Table 11 shows our swap rate results for 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 across the two data-sets, ‘‘MSLR-WEB30K’’ and ‘‘MQ2007’’. Note
that in our original setup, we selected Uninformative/ Ideal 1000 queries from ‘‘MSLR-WEB30K’’. To make our results comparable,
in this experiment we select 500 Uninformative/Ideal queries from ‘‘MSLR-WEB30K’’ and compare the ranking result with the one
from ‘‘MQ2007’’. It can be observed that both 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 share an identical swap rate probability when we conduct the
experiment on the All/Uninformative/Ideal query collection (swap rate across data-sets is 0.107, 0.42 and 0.35 for both metrics).

Table 12 also shows our swap rate results for 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 across Uninformative Vs Ideal queries from the same data-set.
We can still observe that both 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 generate the identical swap rate probability when we compare the ranking results

𝑈𝐸
11

across Uninformative and Ideal sets, except for 𝐷𝐶𝐺𝑉1
(generate a higher swap rate in ‘‘MSLR-WEB30K’’).
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Table 11
Swap rates between method ranks on All/uniform/Ideal queries across
‘‘MSLR-WEB30K’’ and ‘‘MQ2007’’ data-sets.

Metric Swap rate

All Uninform. Ideal

nDCG 0.107 0.420 0.350

𝐷𝐶𝐺𝑈𝐸
𝑉1

0.107 0.420 0.350

𝐷𝐶𝐺𝑈𝐸
𝑉2

0.107 0.420 0.350

Table 12
Swap rates between method ranks on MSLR-WEB30K/MQ2007
data-sets across ‘‘uninformative’’ and ‘‘Ideal’’ query collections.

Metric Swap rate

MSLR-WEB30K MQ2007

nDCG 0.210 0.500
𝐷𝐶𝐺𝑈𝐸

𝑉1
0.250 0.500

𝐷𝐶𝐺𝑈𝐸
𝑉2

0.210 0.500

Table 13
Swap rates between method ranks on MSLR-
WEB30K data-sets across ‘‘broad’’ and ‘‘focused’’
query collections.

Metric Swap rate

MSLR-WEB30K

nDCG 0.250
𝐷𝐶𝐺𝑈𝐸

𝑉1
0.250

𝐷𝐶𝐺𝑈𝐸
𝑉2

0.250

Alternative Query and Document Partitioning: To further test the stability of the proposed UE normalization technique across
ifferent sets of queries and documents, we conducted two additional experiments. These experiments are inspired by previous works
hat have studied robust evaluation of IR systems by randomly partitioning queries and documents (see, e.g., Faggioli, Ferro, & Fuhr,
022; Moffat, Scholer, & Thomas, 2012; Voorhees, Samarov, & Soboroff, 2017); we present the corresponding experiment details
nd results below.

In the first experiment, we investigated whether the proposed UE normalization is can be effective for other criteria of defining
he ‘‘difficulty’’ of queries (besides our previously defined ‘‘Uninformative’’ and ‘‘Ideal’’ query sets). To achieve this, we borrowed
he threshold-based strategy proposed by Mothe, Laporte, and Chifu (2019) to define the difficulty of a query. To be more specific, we
sed the proportion of highly relevant documents (in the evaluation set) as the threshold to partition the original ‘‘MSLR-WEB30K’’
ata set into ‘‘Broad’’ and ‘‘Focused’’ query sets. Formally, a query is labeled as ‘‘broad’’ if at least 50% of its associated documents
ave a relevance label greater or equal to 2 in the testing set. Otherwise, the query is labeled as ‘‘focused’’ because of the few
umber of relevant documents associated with it. Intuitively, a ‘‘broad’’ query is much easier to rank due to its high proportion of
igh-relevant documents, whereas, for the exact opposite reason, it is more challenging to rank documents for a ‘‘focused’’ query.
e also keep the number of ‘‘broad’’ and ‘‘focused’’ queries balanced in our testing data-set to ensure fairness.
Next, we conducted the same ‘‘Consistency’’ experiments for the nDCG metric. Table 13 concludes the swap rate (consistency)

esults between method ranks across ‘‘broad’’ and ‘‘focused’’ query sets while using 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 for the ‘‘MSLR-WEB30K’’
data-set. Interestingly, we still observe that both 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 generate the identical swap rate probability when we compare
the ranking results across Broad and Focused sets, indicating that our proposed metric does not sacrifice consistency while comparing
across different query partitions, where the partitions were created based on query difficulty.

Our second experiment takes a closer look at the consistency property of the UE normalization technique while using replicates,
i.e., different document partitions. We followed Voorhees et al. (2017), who proposed an approach to obtain the required replicate
measurements by randomly splitting the documents into 𝑛 partitions and evaluating each of the document set partitions. Due to
the relatively low average number of documents (119.06) associated with each query in ‘‘MSLR-WEB30K’’ data set, we divided the
documents into just two parts, referred to as the ‘‘left’’ and ‘‘right’’ document sets, using a random split.

Table 14 shows the swap rate (consistency) results between method ranks across ‘‘left’’ and ‘‘right’’ document sets while using
𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 for the ‘‘MSLR-WEB30K’’ data-set. We can observe that both 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 hold the same ranking while
evaluating methods on the ‘‘left’’ and ‘‘right’’ partitions of documents, resulting in the swap rate as 0 for both metrics. This again
shows that the proposed UE normalization technique does not reduce the consistency of the original nDCG metric.
12
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Table 14
Swap rates between method ranks on MSLR-
WEB30K data-sets across ‘‘left’’ and ‘‘right’’
document collections.

Metric Swap rate

MSLR-WEB30K

nDCG 0
𝐷𝐶𝐺𝑈𝐸

𝑉1
0

𝐷𝐶𝐺𝑈𝐸
𝑉2

0

Fig. 3. Histogram of expected 𝐴𝑃 scores of 10,000 queries from the ‘‘MSLR-WEB30K’’ data-set.

6.4. Case study 2: MAP with joint upper & expected value normalization

For our second case study, we selected another popular evaluation metric called Mean Average Precision (𝑀𝐴𝑃 ). However,
original 𝑀𝐴𝑃 computation needs binary label while our two data-sets are multi-relevance label. For consistency, in this paper, we
only consider 0 relevance score as negative and others are positive for both two data-sets. Tables 15 and 16 show the original
𝑀𝐴𝑃 scores from two data-sets. Below, we will first present how we can compute a realistic expected value for Sum Precision (𝑆𝑃 )
by computing its expected value in case of a randomly ranked list of documents. Then, demonstrate our findings of expected value
normalized MAP. Again, expected value normalized MAP essentially means upper expected value normalized MSP.

First, we also show the histogram of expected AP score for 10,000 queries from ‘‘MSLR-WEB30K’’ data-sets. Fig. 3 shows the
histogram of expected 𝐴𝑃 scores of 10,000 queries from the ‘‘MSLR-WEB30K’’ data-set. We can still observe that a large variance
of high expected AP appeared in this data-set, indicating that cannot be ignored (also verified by the results in Tables 17 and 18).
Noted that we again created two special sub-sets of queries based on the difference between their Expected 𝐴𝑃 and average real
𝐴𝑃 obtained by eight LETOR methods to define Uninformative query-set and Ideal query-set (Details in 6.3.2).

6.4.1. Expected value of SP (SP for random ranking)
Given a query 𝑞, assume that 𝑁𝑝 is the total number of relevant documents, 𝑁𝑛 is the number of non-relevant document for

query 𝑞. Also, assume 𝑁𝑝 > 𝑘 and 𝑁𝑛 > 𝑘, 𝑘 is the cutoff variable. 𝑃𝑟𝑒𝑐(𝑖) is the precision at position 𝑖 and 𝑅𝑖 is the relevance at
position 𝑖. Then, expectation of 𝑆𝑃@𝑘 in case of random ranking is the following:

𝐸[𝑆𝑃@𝑘] =
𝑘
∑

𝑖=1
𝐸[𝑃𝑟𝑒𝑐(𝑖) ⋅ 𝑅𝑖]

Now assuming 𝑃𝑟𝑒𝑐(𝑖) and 𝑅𝑖 are independent, we have

𝐸[𝑆𝑃@𝑘] =
𝑘
∑

𝑖=1
𝐸[𝑃𝑟𝑒𝑐(𝑖)] ⋅ 𝐸[𝑅𝑖], where,

𝐸[𝑅𝑖] = 𝑃 [𝑅𝑖 = 1] ⋅ 1 + 𝑃 [𝑅𝑖 = 0] ⋅ 0 = 𝑃 [𝑅𝑟 = 1] =
𝑁𝑝
13

𝑁𝑝 +𝑁𝑛
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𝐸[𝑃𝑟𝑒𝑐@𝑖] = 1
𝑖

[

𝑃
(

𝑃𝑟𝑒𝑐@𝑖 = 1
𝑖

)]

+ 2
𝑖

[

𝑃
(

𝑃𝑟𝑒𝑐@𝑖 = 2
𝑖

)]
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𝑖

[

𝑃
(

𝑃𝑟𝑒𝑐@𝑖 = 𝑖
𝑖

)]

=
( 1
𝑖

)
⎡

⎢

⎢

⎣

(𝑁𝑝
1

)(𝑁𝑛
𝑖−1

)
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𝑖
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⎤
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⎥
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𝑖
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⎡
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⎢
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(𝑁𝑝
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)(𝑁𝑛
𝑖−2
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𝑖
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⎤
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𝑖
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𝑖
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)

(𝑁𝑝+𝑁𝑛
𝑖

)

]

=
( 1
𝑖

) 1
(𝑁𝑝+𝑁𝑛

𝑖

)

𝑖
∑

𝑗=1
𝑗
(

𝑁𝑝
𝑗

)(

𝑁𝑛
𝑖 − 𝑗

)

We will later prove that, ∑𝑖
𝑗=1 𝑗

(𝑁𝑝
𝑗

)(𝑁𝑛
𝑖−𝑗

)

= 𝑁𝑝
𝑁𝑝+𝑁𝑛

𝑖
(𝑁𝑝+𝑁𝑛

𝑖

)

Thus, 𝐸[𝑃𝑟𝑒𝑐@𝑖] = 𝑁𝑝
𝑁𝑝+𝑁𝑛

, Hence:

𝐸[𝑆𝑃@𝑘] =
𝑘
∑

𝑖=1
𝐸[𝑃𝑟𝑒𝑐(𝑖)] ⋅ 𝐸[𝑅𝑖] =

𝑘
∑

𝑖=1

( 𝑁𝑝

𝑁𝑝 +𝑁𝑛

)2

= 𝑘
( 𝑁𝑝

𝑁𝑃 +𝑁𝑛

)2

Now, we will use induction to prove the following:
𝑖

∑

𝑗=1
𝑗
(

𝑁𝑝
𝑗

)(

𝑁𝑛
𝑖 − 𝑗

)

=
( 𝑁𝑝

𝑁𝑝 +𝑁𝑛

)

𝑖
(
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Base case: For i = 1, L.H.S = 1
(𝑁𝑝

1

)(𝑁𝑛
1−1
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= 𝑁𝑝

𝑅.𝐻.𝑆 =
( 𝑁𝑝

𝑁𝑝 +𝑁𝑛

)

1
(

𝑁𝑝 +𝑁𝑛

1

)

=
𝑁𝑝

𝑁𝑝 +𝑁𝑛

(

𝑁𝑝 +𝑁𝑛
)
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So, Eq. (9) is true for 𝑖 = 1

nduction step: Now, Let us assume Eq. (9) is true for 𝑖 = 𝑖-1, then we get the following:
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Expected value normalizedMAP yields different rankings compare to Original MAP for Uninformative query-set: Table 19
shows the Kendall’s 𝜏 rank correlations between two rankings induced by 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 scores in All, Uninformative or Ideal
query collections for the two data-sets. Firstly, we can notice that for both data-sets, 𝑀𝑆𝑃𝑈𝐸

𝑉1
and 𝑀𝐴𝑃 generate identical rankings

for different query set which indicate that there is no difference between 𝑀𝐴𝑃 with 𝑀𝑆𝑃𝑈𝐸
𝑉1

in terms of Kendall’s 𝜏 rank test. While
for 𝑀𝑆𝑃𝑈𝐸

𝑉2
, it generates different rankings for all kinds of query collections in both two data-sets. For instance, in ‘‘MQ2007’’,

Kendall’s 𝜏 correlation between 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸
𝑉2

are 0.785, 0.624 and 1 for all, uninformative and ideal query set, suggesting
𝑈𝐸
14

hat 𝑀𝑆𝑃𝑉2
achieves different outcomes. In addition, the impact is more prominent in case of uninformative compared with ideal.
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Table 15
𝑀𝐴𝑃 scores of different LETOR methods for variable 𝑘 on ’MSLR-WEB30K’ dataset.

Method MAP@

5 10 15 20 30

ARank 0.541 0.494 0.472 0.459 0.449
LNet 0.320 0.299 0.293 0.291 0.294
RBoost 0.544 0.496 0.475 0.461 0.452
RF 0.621 0.571 0.543 0.524 0.505
RNet 0.321 0.300 0.293 0.291 0.295
CA 0.623 0.563 0.530 0.510 0.490
L2LR 0.356 0.335 0.333 0.335 0.345
LMART 0.648 0.592 0.561 0.541 0.519

Table 16
𝑀𝐴𝑃 scores of different LETOR methods for variable 𝑘 on ’MQ2007’ dataset.

Method MAP@

5 10 15 20 30

ARank 0.306 0.292 0.302 0.317 0.362
LNet 0.337 0.323 0.332 0.346 0.390
RBoost 0.346 0.336 0.347 0.363 0.403
RF 0.367 0.352 0.358 0.373 0.414
RNet 0.328 0.317 0.327 0.344 0.387
CA 0.359 0.345 0.356 0.371 0.412
L2LR 0.354 0.338 0.345 0.360 0.404
LMART 0.358 0.345 0.353 0.369 0.410

Table 17
Upper & Expected Value Normalized MSP (𝑉1, 𝑉2) scores of different LETOR methods for variable 𝑘: Each cell shows a particular 𝑀𝑆𝑃 𝑈𝐸

𝑉 score with a particular
. MSLR-WEB30K dataset.
Method 𝑀𝑆𝑃 𝑈𝐸

𝑉1
@ 𝑀𝑆𝑃 𝑈𝐸

𝑉2
@

5 10 15 20 30 5 10 15 20 30

ARank 0.385 0.338 0.315 0.301 0.286 0.347 0.305 0.279 0.261 0.237
LNet 0.197 0.173 0.164 0.159 0.157 −0.072 −0.057 −0.050 −0.045 −0.038
RBoost 0.390 0.342 0.319 0.305 0.290 0.350 0.301 0.275 0.256 0.233
RF 0.457 0.407 0.379 0.359 0.336 0.478 0.427 0.390 0.360 0.322
RNet 0.198 0.174 0.165 0.160 0.158 −0.071 −0.055 −0.049 −0.045 −0.038
CA 0.459 0.400 0.367 0.347 0.323 0.483 0.412 0.367 0.338 0.297
L2LR 0.226 0.201 0.196 0.195 0.198 −0.022 −0.004 0.014 0.031 0.055
LMART 0.482 0.426 0.394 0.374 0.348 0.525 0.463 0.421 0.389 0.346

Table 18
Upper & Expected Value Normalized MSP (𝑉1, 𝑉2) scores of different LETOR methods for variable 𝑘: Each cell shows a particular 𝑀𝑆𝑃 𝑈𝐸

𝑉 score with a particular
. MQ2007 dataset.
Method 𝑀𝑆𝑃 𝑈𝐸

𝑉1
@ 𝑀𝑆𝑃 𝑈𝐸

𝑉2
@

5 10 15 20 30 5 10 15 20 30

ARank 0.236 0.219 0.222 0.228 0.247 0.039 0.077 0.011 0.140 0.190
LNet 0.267 0.249 0.251 0.257 0.274 0.090 0.131 0.163 0.184 0.225
RBoost 0.273 0.260 0.264 0.271 0.285 0.123 0.154 0.188 0.213 0.251
RF 0.291 0.273 0.273 0.280 0.294 0.158 0.190 0.206 0.226 0.272
RNet 0.259 0.244 0.247 0.255 0.272 0.085 0.130 0.156 0.182 0.222
CA 0. 286 0.268 0.272 0.279 0.294 0.142 0.174 0.198 0.220 0.258
L2LR 0.280 0.262 0.263 0.269 0.286 0.123 0.154 0.184 0.209 0.254
LMART 0.282 0.267 0.269 0.275 0.290 0.154 0.194 0.213 0.236 0.272

Statistical Significance Test Yields Different Outcomes for Original MAP Vs expected value normalized MAP: We again
conducted statistical significance tests for every pair of LETOR methods based on their original 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 scores to see how
many times the two metrics disagree on the relative performance between two competing LETOR methods. Table 20 summarizes the
number of disagreements between 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 in two data-sets. For instance, based on student’s t-test, 𝑀𝑆𝑃𝑈𝐸

𝑉2
disagreed

with original 𝑀𝐴𝑃 on 36 (26%) pairs of LETOR methods for Uninformative query set from ‘‘MSLR-WEB30K’’, while 4 disagreements
for Ideal query set. Although none of 𝑀𝑆𝑃𝑈𝐸 disagree with original 𝑀𝐴𝑃 while using All query set from ‘‘MSLR-WEB30K’’, there
15

are still 1 and 8 conflicts appeared in ‘‘MQ2007’’ for two UE normalized version respectively.
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Table 19
Kendall’s 𝜏 rank correlations between LETOR method ranks based on 𝑀𝐴𝑃 and two 𝑀𝑆𝑃 𝑈𝐸 on
All, uninformative or ideal query sets from two data-sets.

Data-set Kendall’s 𝜏

Version All Uninform. Ideal

MSLR-WEB30K MAP vs V1 1.000 1.000 1.000
MAP vs V2 0.928 0.857 0.928

MQ2007 MAP vs V1 1.000 1.000 1.000
MAP vs V2 0.785 0.624 1.000

Table 20
We used Student’s t-test to verify whether a statistically significant difference occurred between
a pair of LETOR methods while using 𝑀𝐴𝑃 and 𝑀𝑆𝑃 𝑈𝐸 and counted the total number of
disagreements on All, uninformative or ideal query sets from two data-sets.

Data-set Conflict cases

Version All Uninform. Ideal

MSLR-WEB30K MAP vs V1 0 15 2
MAP vs V2 0 36 4

MQ2007 MAP vs V1 1 2 3
MAP vs V2 8 21 17

Table 21
Student T-test induced total number of statistically significant differences detected based on 𝑀𝐴𝑃
and 𝑀𝑆𝑃 𝑈𝐸 on All, uninformative or ideal query sets from two data-sets.

Data-set Number of Stat-Sig difference

Version All Uniform. Ideal

MSLR-WEB30K
MAP 129 61 122
V1 129 76 124
V2 129 81 122

MQ2007
MAP 45 0 71
V1 50 2 74
V2 59 21 88

Given the difference in outcomes and disagreements between the original 𝑀𝐴𝑃 metric and its expected value normalized version,
e still trying to compare these two metrics in terms of their Discriminative power and Consistency just like what we did in 𝑛𝐷𝐶𝐺.

6.4.2. Distinguishability
We again follow Sakai (2006) to use student’s t-test to conduct this experiment and use 0.05 as our threshold. Using the

aforementioned Uninformative and Ideal query collections, Table 21 shows some interesting results of these statistical tests for
different query sets in ‘MSLR-WEB10K‘ and’’‘‘MQ2007’’ data-sets.

On ‘‘MSLR-WEB30K’’ Uninformative query set, although 𝑀𝐴𝑃 detect 61 (43%) significantly different pairs, both two proposed
𝑀𝑆𝑃𝑈𝐸

𝑉1
and 𝐷𝐶𝐺𝑈𝐸

𝑉2
can detect more cases of significant differences. What can be clearly seen is 𝑀𝑆𝑃𝑈𝐸

𝑉2
still achieve the best

performance which detected 81 (57%) significantly different pairs on the same set. On the other hand, on ‘‘MSLR-WEB30K’’ Ideal
query set, both 𝑀𝐴𝑃 and two 𝑀𝑆𝑃𝑈𝐸 detected around 122 significantly different pairs. More interestingly, in ‘‘MQ2007’’, while
original 𝑀𝐴𝑃 detect 45 cases of different pairs using all query set, 𝑀𝑆𝑃𝑈𝐸 indeed improve this performance (for 𝑀𝑆𝑃𝑈𝐸

𝑉1
is 50 and

𝑆𝑃𝑈𝐸
𝑉2

is 59). Specifically in uninformative query set, 𝑀𝐴𝑃 cannot detect any significantly different pairs. However, 𝑀𝑆𝑃𝑈𝐸
𝑉2

can
etect 21 pairs of difference, which is very important. On the other hand, 𝑀𝑆𝑃𝑈𝐸

𝑉2
can even detect more cases in the 𝑖𝑑𝑒𝑎𝑙 query

et. It is evident that both two 𝑀𝑆𝑃𝑈𝐸 can better distinguish between two LETOR methods than 𝑀𝐴𝑃 on two data-sets, while not
ompromising distinguishability in case of Ideal queries (even improve the distinguishability in ‘‘MQ2007’’).

Again, we use the formula (8) to compute the percentage of absolute differences between pairs of LETOR methods in terms of
heir original 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 , separately. Here, X represents 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸

𝑉1,2
. (Details of PAD can be found in 6.3.2).

Table 22 illustrates the PAD score in case of 𝑀𝐴𝑃 and proposed two 𝑀𝑆𝑃𝑈𝐸 from two data-sets for different query collections.
rom this table, we can still observe that while using 𝑀𝑆𝑃𝑈𝐸 can achieve higher PAD score than the same for original 𝑀𝐴𝑃 for
ll types of query collections, i.e., using All queries, Uninformative and Ideal query sub-sets. For instance, the average PAD of 𝑀𝐴𝑃
n ‘‘MSLR-WEB30K’’ is 25.57; while for 𝑀𝑆𝑃𝑈𝐸

𝑉2
, the score is 97.63 (using all query). Similarly, we can still discovered that for

ninformative query-set, both 𝑀𝑆𝑃𝑈𝐸 versions achieve a significant boost compared to the same in Ideal query set in both data-sets.
These results show that the proposed UE normalization again improve the distinguishability of original 𝑀𝐴𝑃 and can better

ifferentiate between the quality of two LETOR methods with a larger margin.
16
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Table 22
Percentage Absolute Difference between pairs of LETOR methods in terms of average 𝑀𝐴𝑃 and 𝑀𝑆𝑃 𝑈𝐸 scores on All,
uninformative or ideal query sets from two data-sets..

Metrics PAD score

All Query Uninform Ideal

MSLR MQ2007 MSLR MQ2007 MSLR MQ2007

MAP 25.570 5.910 12.280 5.890 30.180 6.770
𝑀𝑆𝑃 𝑈𝐸

𝑉1
31.840 6.860 16 7.190 35.530 8.040

𝑀𝑆𝑃 𝑈𝐸
𝑉2

97.630 20.010 25.650 28.270 48.290 13.490

Table 23
Swap rates between method ranks on All/uniform/Ideal queries across
‘‘MSLR-WEB30K’’ and ‘‘MQ2007’’ data-sets.

Metric Swap rate

All Uninform. Ideal

MAP 0.250 0.357 0.285
𝑀𝑆𝑃 𝑈𝐸

𝑉1
0.250 0.321 0.250

𝑀𝑆𝑃 𝑈𝐸
𝑉2

0.178 0.250 0.321

Table 24
Swap rates between method ranks on MSLR-WEB30K/MQ2007 data-sets across
‘‘uninformative’’ and ‘‘Ideal’’ query collections.

Metric Swap rate

MSLR-WEB30K MQ2007

MAP 0.142 0.392
𝑀𝑆𝑃 𝑈𝐸

𝑉1
0.142 0.392

𝑀𝑆𝑃 𝑈𝐸
𝑉2

0.107 0.285

Table 25
Swap rates between method ranks on MSLR-
WEB30K data-sets across ‘‘broad’’ and ‘‘focused’’
query collections.

Metric Swap rate

MSLR-WEB30K

MAP 0.03
𝑀𝑆𝑃 𝑈𝐸

𝑉1
0.03

𝑀𝑆𝑃 𝑈𝐸
𝑉2

0.00

6.4.3. Consistency
This experiment again focuses to compare the relative ranking of LETOR methods in terms of their 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 scores,

separately, across different data-sets (‘‘MQ2007’’ Vs ‘‘MSLR-WEB30K’’) as well as across Uninformative and Ideal query collections
within the same data-set. We computed swap rate to quantify the consistency of rankings induced by 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 metrics
across different data-sets. Table 23 shows our swap rate results for 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 across the two data-sets, ‘‘MSLR-WEB30K’’
and ‘‘MQ2007’’. In contrast to identical swap rate scores in 𝑛𝐷𝐶𝐺 and 𝐷𝐶𝐺𝑈𝐸 , 𝑀𝑆𝑃𝑈𝐸

𝑉2
can achieve a overall lower swap rate(swap

rate of 𝑀𝐴𝑃 is 0.25 while 0.178 for 𝑀𝑆𝑃𝑈𝐸
𝑉2

) across a data-sets comparison while considering all query set.
Table 24 also shows our swap rate results for 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 across Uninformative Vs Ideal queries from the same data-set.

Similarly, we can still observe that 𝑀𝑆𝑃𝑈𝐸
𝑉2

can obtain a more consistent ranking results across different query collection, which is
very useful for an evaluation metric.

Alternative Query and Document Partitioning: We also conducted two additional experiments to measure the stabil-
ity/consistency of expected value normalization on 𝑀𝐴𝑃 . Using the aforementioned ‘‘broad’’ and ‘‘focused’’ query partitions, we
conducted the same consistency experiment as in Section 6.3.2. Table 25 shows the swap rate numbers for 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸

etween method ranks for ‘‘MSLR-WEB30K’’ data set between ‘‘broad’’ and ‘‘focused’’ query partitions. Interestingly, we can notice
hat 𝑀𝑆𝑃𝑈𝐸

𝑉2
even shows better consistency (swap rate is 0) compared to the original 𝑀𝐴𝑃 (swap rate is 0.03). Similarly, in Table 26,

we can see that both 𝑀𝐴𝑃 and 𝑀𝑆𝑃𝑈𝐸 maintain the same rank when evaluating methods on the ‘‘left’’ and ‘‘right’’ document
partitions (see Section 6.3.2 for definitions of ‘‘left’’ and ‘‘right’’ partitions).

7. Discussions and conclusion

In this paper, we presented a novel perspective towards evaluation of Information Retrieval (IR) systems. Specifically, we
performed two case-study on nDCG and MAP, both are widely popular metrics for IR evaluation, and started with the observation
17
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Table 26
Swap rates between method ranks on MSLR-
WEB30K data-sets across ‘‘left’’ and ‘‘right’’
document collections.

Metric Swap rate

MSLR-WEB30K

MAP 0
𝑀𝑆𝑃 𝑈𝐸

𝑉1
0

𝑀𝑆𝑃 𝑈𝐸
𝑉2

0

that, traditional nDCG and MAP computation does not include a query-specific expected value normalization although they include
a query-specific upper-bound normalization. In other words, the current practice is to assume a uniform expected value (zero) across
all queries while computing nDCG and MAP, an assumption that is incorrect. This limitation raises a question mark on the previous
comparative studies involving multiple ranking methods where an average evaluation metric score is reported, because Uninformative
vs. Informative vs. Ideal queries are rewarded equally in traditional IR evaluation metric computation and the expected value of the
evaluation metric is ignored. How can we incorporate query-specific expected value normalization into IR evaluation metrics and how will
it impact IR evaluation in general? This is the central issue we investigated in this paper.

Conceptual Leap: To address the aforementioned issue, we proposed to penalize the traditional IR evaluation metric score of each
query with an expected value normalization term specific to that query. To achieve this, we introduced a joint upper and expected
value normalization (UE-normalization) framework and instantiated two versions of the UE-normalization, 𝑉1 𝑉2, for two popular
IR evaluation metric 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 , essentially creating four new evaluation metrics.

The next challenge in our work was to estimate a more realistic query-specific expected value for above two metrics. For this
estimation, we argued that a reasonable ranking method should be at least as good as a random ranking method, so a more realistic
expected value should be the score expected by a mere random ranking of the document collection rather than the current practice of
assuming zero as an expected value across all queries. Using probability and permutation theory, we derived a closed-form formula
to compute the expected 𝐷𝐶𝐺 in case of random ranking. The proof was completed by showing that the expected relevance label of
a document at position 𝑖 is actually independent of the position and can be replaced by the expected relevance label of the document
collection associated with the particular query in the validation data-set. For expected 𝑆𝑃 , we also use probability and induction
to prove the correctness of our assumption. The derivation details can be found in each case study section.

Depth of Impact: Using two publicly available web search and learning-to-rank data-sets, we conducted extensive experiments
with eight popular LETOR methods to understand the implications 𝐷𝐶𝐺𝑈𝐸 and 𝑀𝑆𝑃𝑈𝐸 . The implications are briefly summarized
as follows:

1. Kendall’s 𝜏 rank correlation coefficient test on two different rankings of multiple LETOR methods, where the ranks are induced by
both traditional metric (i.e. 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑃 ) vs UE-normalized metrics(i.e. 𝐷𝐶𝐺𝑈𝐸 and 𝑀𝑆𝑃𝑈𝐸) yields different conclusions
regarding the relative ranking of multiple LETOR methods.

. Statistical Significance tests can lead to conflicting conclusions regarding the relative performance between a pair of LETOR
methods, when comparing them in terms of traditional metrics vs UE-normalized metrics scores.

. The above two observations are more prominent in case of Uninformative query collection.

Next, we systematically compared the traditional evaluation metric and UE-normalized metrics from two important perspectives:
istinguishability and consistency. The findings are briefly summarized below.

. Discriminative power analysis and PAD scores suggest that our metric can better distinguish between two closely performing
LETOR methods. These results were confirmed through Student’s t-test and PAD score analysis.

2. For consistency, 𝑀𝑆𝑃𝑈𝐸
𝑉2

achieves the lowest swap rate across a data-sets comparison as well as the lowest swap rate while we
compare the ranking results from uninformative vs. ideal query sets. On the other hand, the proposed 𝐷𝐶𝐺𝑈𝐸 metric is identical
to the original 𝑛𝐷𝐶𝐺 metric in terms of consistency across different data-sets as well as across Uninformative/Ideal query sets
within the same data-set.

. All above experiments reveal that the impact of expected value normalization is more substantial in case of ‘‘Uninformative’’
queries in comparison to ‘‘Ideal’’ queries, suggesting, expected value normalization is crucial when the validation set contains a
large number of Uninformative queries (i.e., the ranking methods fail to perform significantly better than the randomly ranked
output).

readth of Impact: The proposed expected value normalization technique is very general and can be potentially extended to other
R evaluation metrics like ERR, which is an exciting future direction. Another direction can be to investigate such expected value
ormalization for evaluation in domains other than IR, for example, ROUGE metric from the text summarization and NLP literature.

inal Words: The key take-away message from this paper is the following: The IR community should consider expected value
ormalization seriously while evaluating any IR system. Our work takes a first step towards this important direction and can serve
s a pilot study to demonstrate the importance and implications of expected value normalization.
18
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