Generative Feature Language Models for Mining Implicit Features from Customer Reviews

Published in ACM CIKM, 2016

Download paper here

Image not Loading

Online customer reviews are very useful for both helping consumers make buying decisions on products or services and providing business intelligence. However, it is a challenge for people to manually digest all the opinions buried in large amounts of review data, raising the need for automatic opinion summarization and analysis. One fundamental challenge in automatic opinion summarization and analysis is to mine implicit features, i.e., recognizing the features implicitly mentioned (referred to) in a review sentence. Existing approaches require many ad hoc manual parameter tuning, and are thus hard to optimize or generalize; their evaluation has only been done with Chinese review data. In this paper, we propose a new approach based on generative feature language models that can mine the implicit features more effectively through unsupervised statistical learning. The parameters are optimized automatically using an Expectation-Maximization algorithm. We also created eight new data sets to facilitate evaluation of this task in English. Experimental results show that our proposed approach is very effective for assigning features to sentences that do not explicitly mention the features, and outperforms the existing algorithms by a large margin.